Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029137764> ?p ?o ?g. }
- W2029137764 endingPage "688" @default.
- W2029137764 startingPage "685" @default.
- W2029137764 abstract "Protein folding is commonly pictured as a slide down the slopes of a free-energy landscape or 'folding funnel'. Theory predicts that the roughness of such slopes — resulting from local energy traps — should slow folding. Wensley et al. confirm this prediction by demonstrating that the internal friction of preformed helices does cause some members of the 'spectrin' domain family to fold (or unfold) 3,000 times more slowly than others. The authors propose that this unusual feature might have evolved to make spectrins last longer without turnover in red blood cells. The primary sequence of a protein defines its free-energy landscape and thus determines the rate constants of folding and unfolding, with theory suggesting that roughness in the energy landscape leads to slower folding. However, obtaining experimental descriptions of this landscape is challenging. Landscape roughness is now shown to be responsible for the slower folding and unfolding times observed in the R16 and R17 domains of α-spectrin relative to the similar R15 domain. Energy landscape theory is a powerful tool for understanding the structure and dynamics of complex molecular systems, in particular biological macromolecules1. The primary sequence of a protein defines its free-energy landscape and thus determines the folding pathway and the rate constants of folding and unfolding, as well as the protein’s native structure. Theory has shown that roughness in the energy landscape will lead to slower folding1, but derivation of detailed experimental descriptions of this landscape is challenging. Simple folding models2,3 show that folding is significantly influenced by chain entropy; proteins in which the contacts are local fold quickly, owing to the low entropy cost of forming stabilizing, native contacts during folding4,5. For some protein families, stability is also a determinant of folding rate constants6. Where these simple metrics fail to predict folding behaviour, it is probable that there are features in the energy landscape that are unusual. Such general observations cannot explain the folding behaviour of the R15, R16 and R17 domains of α-spectrin. R15 folds ∼3,000 times faster than its homologues, although they have similar structures, stabilities and, as far as can be determined, transition-state stabilities7,8,9,10. Here we show that landscape roughness (internal friction) is responsible for the slower folding and unfolding of R16 and R17. We use chimaeric domains to demonstrate that this internal friction is a property of the core, and suggest that frustration in the landscape of the slow-folding spectrin domains may be due to misdocking of the long helices during folding. Theoretical studies have suggested that rugged landscapes will result in slower folding; here we show experimentally that such a phenomenon directly influences the folding kinetics of a ‘normal’ protein, that is, one with a significant energy barrier that folds on a relatively slow, millisecond–second, timescale." @default.
- W2029137764 created "2016-06-24" @default.
- W2029137764 creator A5020633703 @default.
- W2029137764 creator A5034648998 @default.
- W2029137764 creator A5043637925 @default.
- W2029137764 creator A5046741118 @default.
- W2029137764 creator A5054010071 @default.
- W2029137764 creator A5063563910 @default.
- W2029137764 creator A5074972603 @default.
- W2029137764 creator A5078254902 @default.
- W2029137764 creator A5084453970 @default.
- W2029137764 date "2010-02-01" @default.
- W2029137764 modified "2023-10-13" @default.
- W2029137764 title "Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family" @default.
- W2029137764 cites W1550452265 @default.
- W2029137764 cites W1607106398 @default.
- W2029137764 cites W1963601673 @default.
- W2029137764 cites W1966103056 @default.
- W2029137764 cites W1968291593 @default.
- W2029137764 cites W1971832114 @default.
- W2029137764 cites W1972675000 @default.
- W2029137764 cites W1976528962 @default.
- W2029137764 cites W1979863594 @default.
- W2029137764 cites W1981716245 @default.
- W2029137764 cites W1994767203 @default.
- W2029137764 cites W1999365653 @default.
- W2029137764 cites W2003761934 @default.
- W2029137764 cites W2008440654 @default.
- W2029137764 cites W2010220189 @default.
- W2029137764 cites W2010724302 @default.
- W2029137764 cites W2013536460 @default.
- W2029137764 cites W2013906676 @default.
- W2029137764 cites W2015901600 @default.
- W2029137764 cites W2022548331 @default.
- W2029137764 cites W2031006390 @default.
- W2029137764 cites W2035998327 @default.
- W2029137764 cites W2039423289 @default.
- W2029137764 cites W2041367082 @default.
- W2029137764 cites W2050509234 @default.
- W2029137764 cites W2063870542 @default.
- W2029137764 cites W2068829853 @default.
- W2029137764 cites W2071075252 @default.
- W2029137764 cites W2075505388 @default.
- W2029137764 cites W2083006981 @default.
- W2029137764 cites W2085266415 @default.
- W2029137764 cites W2089597488 @default.
- W2029137764 cites W2092875598 @default.
- W2029137764 cites W2104925184 @default.
- W2029137764 cites W2116076986 @default.
- W2029137764 cites W2137468036 @default.
- W2029137764 cites W2141945073 @default.
- W2029137764 cites W2163814597 @default.
- W2029137764 cites W2165028383 @default.
- W2029137764 cites W2165222310 @default.
- W2029137764 cites W2170150807 @default.
- W2029137764 cites W2170557497 @default.
- W2029137764 cites W2337588438 @default.
- W2029137764 doi "https://doi.org/10.1038/nature08743" @default.
- W2029137764 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2851140" @default.
- W2029137764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20130652" @default.
- W2029137764 hasPublicationYear "2010" @default.
- W2029137764 type Work @default.
- W2029137764 sameAs 2029137764 @default.
- W2029137764 citedByCount "147" @default.
- W2029137764 countsByYear W20291377642012 @default.
- W2029137764 countsByYear W20291377642013 @default.
- W2029137764 countsByYear W20291377642014 @default.
- W2029137764 countsByYear W20291377642015 @default.
- W2029137764 countsByYear W20291377642016 @default.
- W2029137764 countsByYear W20291377642017 @default.
- W2029137764 countsByYear W20291377642018 @default.
- W2029137764 countsByYear W20291377642019 @default.
- W2029137764 countsByYear W20291377642020 @default.
- W2029137764 countsByYear W20291377642021 @default.
- W2029137764 countsByYear W20291377642022 @default.
- W2029137764 countsByYear W20291377642023 @default.
- W2029137764 crossrefType "journal-article" @default.
- W2029137764 hasAuthorship W2029137764A5020633703 @default.
- W2029137764 hasAuthorship W2029137764A5034648998 @default.
- W2029137764 hasAuthorship W2029137764A5043637925 @default.
- W2029137764 hasAuthorship W2029137764A5046741118 @default.
- W2029137764 hasAuthorship W2029137764A5054010071 @default.
- W2029137764 hasAuthorship W2029137764A5063563910 @default.
- W2029137764 hasAuthorship W2029137764A5074972603 @default.
- W2029137764 hasAuthorship W2029137764A5078254902 @default.
- W2029137764 hasAuthorship W2029137764A5084453970 @default.
- W2029137764 hasBestOaLocation W20291377642 @default.
- W2029137764 hasConcept C119599485 @default.
- W2029137764 hasConcept C119621388 @default.
- W2029137764 hasConcept C121332964 @default.
- W2029137764 hasConcept C121864883 @default.
- W2029137764 hasConcept C127413603 @default.
- W2029137764 hasConcept C142669718 @default.
- W2029137764 hasConcept C1491633281 @default.
- W2029137764 hasConcept C159467904 @default.
- W2029137764 hasConcept C162203774 @default.
- W2029137764 hasConcept C17435862 @default.
- W2029137764 hasConcept C174507519 @default.