Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029144047> ?p ?o ?g. }
- W2029144047 endingPage "264" @default.
- W2029144047 startingPage "251" @default.
- W2029144047 abstract "Vegetation is a fundamental element in urban ecosystems, and vegetation mapping is critical for urban and landscape planning and management. While remote sensing has increasingly been used for vegetation mapping, this spatially explicit approach can be challenging due to the spectral similarity between various vegetation types and the presence of complex features in the urban environment. The objective of this study is to develop a method that can help improve vegetation mapping in urban areas from medium-resolution remote sensor imagery. Central to our method is the combined use of stratified classification and multiple endmember spectral mixture analysis (MESMA) techniques. Specifically, we firstly partition the entire landscape into rural and urban subsets using road network density so that each subset can be processed independently to minimize the spectral confusion between some urban features and agricultural land covers. Secondly, we carefully extract all vegetation covers at the sub-pixel level for the urban subset by using the MESMA technique in order to account for small, fragmented vegetation patches that would be classified as non-vegetated classes otherwise. Thirdly, we adopt a separate supervised classification protocol to the rural subset and the vegetation covers extracted from the urban subset. Finally, we combine the classified outcomes from the two subsets to produce a complete map. We have implemented this method to produce a land cover map including various vegetation types from a Landsat Thematic Mapper (TM) image covering a large metropolitan area. It is found that this method has substantially outperformed two related ones that use the same supervised protocol to the entire area directly or to the rural subset and the urban subset without being MESMA processed. The advantage of our method is that it has extended the capability of sub-pixel analysis beyond vegetation abundance estimation and into the area of mapping thematic vegetation types in urban areas." @default.
- W2029144047 created "2016-06-24" @default.
- W2029144047 creator A5009410044 @default.
- W2029144047 creator A5086038967 @default.
- W2029144047 date "2013-06-01" @default.
- W2029144047 modified "2023-10-06" @default.
- W2029144047 title "Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis" @default.
- W2029144047 cites W1648556314 @default.
- W2029144047 cites W1967991976 @default.
- W2029144047 cites W1977183385 @default.
- W2029144047 cites W1980156842 @default.
- W2029144047 cites W1987587474 @default.
- W2029144047 cites W1993417238 @default.
- W2029144047 cites W1993589053 @default.
- W2029144047 cites W2000229595 @default.
- W2029144047 cites W2002664198 @default.
- W2029144047 cites W2005156666 @default.
- W2029144047 cites W2015502627 @default.
- W2029144047 cites W2021549707 @default.
- W2029144047 cites W2025389829 @default.
- W2029144047 cites W2026332487 @default.
- W2029144047 cites W2029759810 @default.
- W2029144047 cites W2031403134 @default.
- W2029144047 cites W2031666406 @default.
- W2029144047 cites W2036805539 @default.
- W2029144047 cites W2038353908 @default.
- W2029144047 cites W2038391454 @default.
- W2029144047 cites W2044527053 @default.
- W2029144047 cites W2049827513 @default.
- W2029144047 cites W2053688812 @default.
- W2029144047 cites W2054116204 @default.
- W2029144047 cites W2056919691 @default.
- W2029144047 cites W2060384859 @default.
- W2029144047 cites W2070724483 @default.
- W2029144047 cites W2098149888 @default.
- W2029144047 cites W2108045836 @default.
- W2029144047 cites W2110637553 @default.
- W2029144047 cites W2111371439 @default.
- W2029144047 cites W2114628540 @default.
- W2029144047 cites W2117059495 @default.
- W2029144047 cites W2123907688 @default.
- W2029144047 cites W2127101156 @default.
- W2029144047 cites W2127792030 @default.
- W2029144047 cites W2128802552 @default.
- W2029144047 cites W2134232109 @default.
- W2029144047 cites W2136635809 @default.
- W2029144047 cites W2138973222 @default.
- W2029144047 cites W2142167540 @default.
- W2029144047 cites W2144828439 @default.
- W2029144047 cites W2144881411 @default.
- W2029144047 cites W2144994528 @default.
- W2029144047 cites W2151773573 @default.
- W2029144047 cites W2158445854 @default.
- W2029144047 cites W2159530395 @default.
- W2029144047 cites W2161262657 @default.
- W2029144047 cites W2162020795 @default.
- W2029144047 cites W2163689283 @default.
- W2029144047 cites W2168533505 @default.
- W2029144047 cites W2172063876 @default.
- W2029144047 cites W4248470197 @default.
- W2029144047 doi "https://doi.org/10.1016/j.rse.2013.02.020" @default.
- W2029144047 hasPublicationYear "2013" @default.
- W2029144047 type Work @default.
- W2029144047 sameAs 2029144047 @default.
- W2029144047 citedByCount "82" @default.
- W2029144047 countsByYear W20291440472012 @default.
- W2029144047 countsByYear W20291440472013 @default.
- W2029144047 countsByYear W20291440472014 @default.
- W2029144047 countsByYear W20291440472015 @default.
- W2029144047 countsByYear W20291440472016 @default.
- W2029144047 countsByYear W20291440472017 @default.
- W2029144047 countsByYear W20291440472018 @default.
- W2029144047 countsByYear W20291440472019 @default.
- W2029144047 countsByYear W20291440472020 @default.
- W2029144047 countsByYear W20291440472021 @default.
- W2029144047 countsByYear W20291440472022 @default.
- W2029144047 countsByYear W20291440472023 @default.
- W2029144047 crossrefType "journal-article" @default.
- W2029144047 hasAuthorship W2029144047A5009410044 @default.
- W2029144047 hasAuthorship W2029144047A5086038967 @default.
- W2029144047 hasConcept C142724271 @default.
- W2029144047 hasConcept C159078339 @default.
- W2029144047 hasConcept C18903297 @default.
- W2029144047 hasConcept C205649164 @default.
- W2029144047 hasConcept C2668921 @default.
- W2029144047 hasConcept C2775938548 @default.
- W2029144047 hasConcept C2776054349 @default.
- W2029144047 hasConcept C2776133958 @default.
- W2029144047 hasConcept C2778102629 @default.
- W2029144047 hasConcept C2780648208 @default.
- W2029144047 hasConcept C39432304 @default.
- W2029144047 hasConcept C4792198 @default.
- W2029144047 hasConcept C58237817 @default.
- W2029144047 hasConcept C58640448 @default.
- W2029144047 hasConcept C62649853 @default.
- W2029144047 hasConcept C71924100 @default.
- W2029144047 hasConcept C86803240 @default.
- W2029144047 hasConcept C93692415 @default.