Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029147855> ?p ?o ?g. }
- W2029147855 endingPage "82" @default.
- W2029147855 startingPage "69" @default.
- W2029147855 abstract "In this paper, a focused time lagged recurrent neural network (FTLRNN) with gamma memory is developed to learn the dynamics of a typical liquid saturated steam heat exchanger process. This highly nonlinear process has been a significant benchmark for non-linear control design purposes, since it is characterized by non-minimum phase behaviour. It appears from the literature review that an optimal neural network (NN) model for the identification of such a highly nonlinear complex dynamical system is not currently available. This paper compares the performance of two NN configurations, namely a well-known Multi Layer Perceptron (MLP) NN model and the proposed FTLRNN model. A standard static backpropagation algorithm with momentum term has been used for both the models. It is shown that the estimated dynamic NN based model comprising of a gamma memory filter followed by a MLP based NN clearly outperforms the static MLP NN in various performance metrics such as mean square error (MSE), normalized MSE and correlation coefficients on the testing datasets. In addition, the output of the proposed NN model closely follows the desired output of the exchanger process for the testing instances. This also means that the most of the information about the rich nonlinear dynamics of the system has been extracted successfully from the training dataset and that the proposed model approximates the given system with reasonable accuracy. It is shown that the suggested dynamic NN model has a remarkable system identification capability for the problem considered in this paper. Dynamic NN model has clearly outperformed the static NN models in respect of the performance measures. The major contribution of this paper is that the FTLRNNs can elegantly be used to learn underlying highly nonlinear dynamics of the system." @default.
- W2029147855 created "2016-06-24" @default.
- W2029147855 creator A5056170854 @default.
- W2029147855 date "2007-01-01" @default.
- W2029147855 modified "2023-09-26" @default.
- W2029147855 title "Identification of a Liquid Saturated Steam Heat Exchanger using Focused Time Lagged Recurrent Neural Network Model" @default.
- W2029147855 cites W1535818459 @default.
- W2029147855 cites W1954117012 @default.
- W2029147855 cites W1965324089 @default.
- W2029147855 cites W1966605481 @default.
- W2029147855 cites W1967914652 @default.
- W2029147855 cites W1993578795 @default.
- W2029147855 cites W2035739518 @default.
- W2029147855 cites W2103368314 @default.
- W2029147855 cites W2103496339 @default.
- W2029147855 cites W2117671523 @default.
- W2029147855 cites W2121897346 @default.
- W2029147855 cites W2139273175 @default.
- W2029147855 cites W2143787696 @default.
- W2029147855 cites W2154935584 @default.
- W2029147855 cites W2166116275 @default.
- W2029147855 cites W2279527887 @default.
- W2029147855 cites W2502590207 @default.
- W2029147855 doi "https://doi.org/10.1080/03772063.2007.10876122" @default.
- W2029147855 hasPublicationYear "2007" @default.
- W2029147855 type Work @default.
- W2029147855 sameAs 2029147855 @default.
- W2029147855 citedByCount "20" @default.
- W2029147855 countsByYear W20291478552012 @default.
- W2029147855 countsByYear W20291478552013 @default.
- W2029147855 countsByYear W20291478552017 @default.
- W2029147855 countsByYear W20291478552018 @default.
- W2029147855 countsByYear W20291478552021 @default.
- W2029147855 crossrefType "journal-article" @default.
- W2029147855 hasAuthorship W2029147855A5056170854 @default.
- W2029147855 hasConcept C105795698 @default.
- W2029147855 hasConcept C106131492 @default.
- W2029147855 hasConcept C107706546 @default.
- W2029147855 hasConcept C111919701 @default.
- W2029147855 hasConcept C11413529 @default.
- W2029147855 hasConcept C116834253 @default.
- W2029147855 hasConcept C119247159 @default.
- W2029147855 hasConcept C121332964 @default.
- W2029147855 hasConcept C127413603 @default.
- W2029147855 hasConcept C13280743 @default.
- W2029147855 hasConcept C139945424 @default.
- W2029147855 hasConcept C147168706 @default.
- W2029147855 hasConcept C154945302 @default.
- W2029147855 hasConcept C155032097 @default.
- W2029147855 hasConcept C158622935 @default.
- W2029147855 hasConcept C179717631 @default.
- W2029147855 hasConcept C185798385 @default.
- W2029147855 hasConcept C205649164 @default.
- W2029147855 hasConcept C22157029 @default.
- W2029147855 hasConcept C2775924081 @default.
- W2029147855 hasConcept C31972630 @default.
- W2029147855 hasConcept C33923547 @default.
- W2029147855 hasConcept C41008148 @default.
- W2029147855 hasConcept C47446073 @default.
- W2029147855 hasConcept C50644808 @default.
- W2029147855 hasConcept C59822182 @default.
- W2029147855 hasConcept C60908668 @default.
- W2029147855 hasConcept C62520636 @default.
- W2029147855 hasConcept C67186912 @default.
- W2029147855 hasConcept C77088390 @default.
- W2029147855 hasConcept C78519656 @default.
- W2029147855 hasConcept C86803240 @default.
- W2029147855 hasConcept C98045186 @default.
- W2029147855 hasConceptScore W2029147855C105795698 @default.
- W2029147855 hasConceptScore W2029147855C106131492 @default.
- W2029147855 hasConceptScore W2029147855C107706546 @default.
- W2029147855 hasConceptScore W2029147855C111919701 @default.
- W2029147855 hasConceptScore W2029147855C11413529 @default.
- W2029147855 hasConceptScore W2029147855C116834253 @default.
- W2029147855 hasConceptScore W2029147855C119247159 @default.
- W2029147855 hasConceptScore W2029147855C121332964 @default.
- W2029147855 hasConceptScore W2029147855C127413603 @default.
- W2029147855 hasConceptScore W2029147855C13280743 @default.
- W2029147855 hasConceptScore W2029147855C139945424 @default.
- W2029147855 hasConceptScore W2029147855C147168706 @default.
- W2029147855 hasConceptScore W2029147855C154945302 @default.
- W2029147855 hasConceptScore W2029147855C155032097 @default.
- W2029147855 hasConceptScore W2029147855C158622935 @default.
- W2029147855 hasConceptScore W2029147855C179717631 @default.
- W2029147855 hasConceptScore W2029147855C185798385 @default.
- W2029147855 hasConceptScore W2029147855C205649164 @default.
- W2029147855 hasConceptScore W2029147855C22157029 @default.
- W2029147855 hasConceptScore W2029147855C2775924081 @default.
- W2029147855 hasConceptScore W2029147855C31972630 @default.
- W2029147855 hasConceptScore W2029147855C33923547 @default.
- W2029147855 hasConceptScore W2029147855C41008148 @default.
- W2029147855 hasConceptScore W2029147855C47446073 @default.
- W2029147855 hasConceptScore W2029147855C50644808 @default.
- W2029147855 hasConceptScore W2029147855C59822182 @default.
- W2029147855 hasConceptScore W2029147855C60908668 @default.
- W2029147855 hasConceptScore W2029147855C62520636 @default.
- W2029147855 hasConceptScore W2029147855C67186912 @default.
- W2029147855 hasConceptScore W2029147855C77088390 @default.