Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029202224> ?p ?o ?g. }
- W2029202224 endingPage "132" @default.
- W2029202224 startingPage "99" @default.
- W2029202224 abstract "In Bayesian analysis of vector autoregressive models, and especially in forecasting applications, the Minnesota prior of Litterman is frequently used. In many cases other prior distributions provide better forecasts and are preferable from a theoretical standpoint. Several of these priors require numerical methods in order to evaluate the posterior distribution. Different ways of implementing Monte Carlo integration are considered. It is found that Gibbs sampling performs as well as, or better, then importance sampling and that the Gibbs sampling algorithms are less adversely affected by model size. We also report on the forecasting performance of the different prior distributions. © 1997 by John Wiley & Sons, Ltd." @default.
- W2029202224 created "2016-06-24" @default.
- W2029202224 creator A5003935283 @default.
- W2029202224 creator A5088849615 @default.
- W2029202224 date "1997-03-01" @default.
- W2029202224 modified "2023-10-17" @default.
- W2029202224 title "NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS" @default.
- W2029202224 cites W1584755923 @default.
- W2029202224 cites W1627533315 @default.
- W2029202224 cites W1706004215 @default.
- W2029202224 cites W2020999234 @default.
- W2029202224 cites W2026957296 @default.
- W2029202224 cites W2031035075 @default.
- W2029202224 cites W2046070374 @default.
- W2029202224 cites W2046105906 @default.
- W2029202224 cites W2057565703 @default.
- W2029202224 cites W2083875149 @default.
- W2029202224 cites W2092270509 @default.
- W2029202224 cites W2109690032 @default.
- W2029202224 cites W2124511545 @default.
- W2029202224 cites W2132865904 @default.
- W2029202224 cites W3015217870 @default.
- W2029202224 cites W3021642150 @default.
- W2029202224 cites W3139745465 @default.
- W2029202224 doi "https://doi.org/10.1002/(sici)1099-1255(199703)12:2<99::aid-jae429>3.0.co;2-a" @default.
- W2029202224 hasPublicationYear "1997" @default.
- W2029202224 type Work @default.
- W2029202224 sameAs 2029202224 @default.
- W2029202224 citedByCount "474" @default.
- W2029202224 countsByYear W20292022242012 @default.
- W2029202224 countsByYear W20292022242013 @default.
- W2029202224 countsByYear W20292022242014 @default.
- W2029202224 countsByYear W20292022242015 @default.
- W2029202224 countsByYear W20292022242016 @default.
- W2029202224 countsByYear W20292022242017 @default.
- W2029202224 countsByYear W20292022242018 @default.
- W2029202224 countsByYear W20292022242019 @default.
- W2029202224 countsByYear W20292022242020 @default.
- W2029202224 countsByYear W20292022242021 @default.
- W2029202224 countsByYear W20292022242022 @default.
- W2029202224 countsByYear W20292022242023 @default.
- W2029202224 crossrefType "journal-article" @default.
- W2029202224 hasAuthorship W2029202224A5003935283 @default.
- W2029202224 hasAuthorship W2029202224A5088849615 @default.
- W2029202224 hasConcept C105795698 @default.
- W2029202224 hasConcept C106131492 @default.
- W2029202224 hasConcept C107673813 @default.
- W2029202224 hasConcept C111350023 @default.
- W2029202224 hasConcept C119857082 @default.
- W2029202224 hasConcept C140779682 @default.
- W2029202224 hasConcept C149782125 @default.
- W2029202224 hasConcept C154945302 @default.
- W2029202224 hasConcept C158424031 @default.
- W2029202224 hasConcept C159877910 @default.
- W2029202224 hasConcept C160234255 @default.
- W2029202224 hasConcept C167723999 @default.
- W2029202224 hasConcept C177769412 @default.
- W2029202224 hasConcept C19499675 @default.
- W2029202224 hasConcept C204693719 @default.
- W2029202224 hasConcept C2776214188 @default.
- W2029202224 hasConcept C31972630 @default.
- W2029202224 hasConcept C33923547 @default.
- W2029202224 hasConcept C41008148 @default.
- W2029202224 hasConcept C52740198 @default.
- W2029202224 hasConceptScore W2029202224C105795698 @default.
- W2029202224 hasConceptScore W2029202224C106131492 @default.
- W2029202224 hasConceptScore W2029202224C107673813 @default.
- W2029202224 hasConceptScore W2029202224C111350023 @default.
- W2029202224 hasConceptScore W2029202224C119857082 @default.
- W2029202224 hasConceptScore W2029202224C140779682 @default.
- W2029202224 hasConceptScore W2029202224C149782125 @default.
- W2029202224 hasConceptScore W2029202224C154945302 @default.
- W2029202224 hasConceptScore W2029202224C158424031 @default.
- W2029202224 hasConceptScore W2029202224C159877910 @default.
- W2029202224 hasConceptScore W2029202224C160234255 @default.
- W2029202224 hasConceptScore W2029202224C167723999 @default.
- W2029202224 hasConceptScore W2029202224C177769412 @default.
- W2029202224 hasConceptScore W2029202224C19499675 @default.
- W2029202224 hasConceptScore W2029202224C204693719 @default.
- W2029202224 hasConceptScore W2029202224C2776214188 @default.
- W2029202224 hasConceptScore W2029202224C31972630 @default.
- W2029202224 hasConceptScore W2029202224C33923547 @default.
- W2029202224 hasConceptScore W2029202224C41008148 @default.
- W2029202224 hasConceptScore W2029202224C52740198 @default.
- W2029202224 hasIssue "2" @default.
- W2029202224 hasLocation W20292022241 @default.
- W2029202224 hasOpenAccess W2029202224 @default.
- W2029202224 hasPrimaryLocation W20292022241 @default.
- W2029202224 hasRelatedWork W1597455262 @default.
- W2029202224 hasRelatedWork W1800230628 @default.
- W2029202224 hasRelatedWork W2029202224 @default.
- W2029202224 hasRelatedWork W2038626737 @default.
- W2029202224 hasRelatedWork W2162457363 @default.
- W2029202224 hasRelatedWork W2511883346 @default.
- W2029202224 hasRelatedWork W2963513064 @default.
- W2029202224 hasRelatedWork W2967199651 @default.
- W2029202224 hasRelatedWork W3016163002 @default.
- W2029202224 hasRelatedWork W4288261522 @default.