Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029296469> ?p ?o ?g. }
- W2029296469 endingPage "15244" @default.
- W2029296469 startingPage "15234" @default.
- W2029296469 abstract "Inverted repeats in ion-coupled transporters have evolved independently in many unrelated families. It has been suggested that this inverted symmetry is an essential element of the mechanism that allows for the conformational transitions in transporters. We show here that small multidrug transporters offer a model for the evolution of such repeats. This family includes both homodimers and closely related heterodimers. In the former, the topology determinants, evidently identical in each protomer, are weak, and we show that for EmrE, an homodimer from Escherichia coli, the insertion into the membrane is random, and dimers are functional whether they insert into the cytoplasmic membrane with the N- and C-terminal domains facing the inside or the outside of the cell. Also, mutants designed to insert with biased topology are functional regardless of the topology. In the case of EbrAB, a heterodimer homologue supposed to interact antiparallel, we show that one of the subunits, EbrB, can also function as a homodimer, most likely in a parallel mode. In addition, the EmrE homodimer can be forced to an antiparallel topology by fusion of an additional transmembrane segment. The simplicity of the mechanism of coupling ion and substrate transport and the few requirements for substrate recognition provide the robustness necessary to tolerate such a unique and unprecedented ambiguity in the interaction of the subunits and in the dimer topology relative to the membrane. The results suggest that the small multidrug transporters are at an evolutionary junction and provide a model for the evolution of structure of transport proteins. Inverted repeats in ion-coupled transporters have evolved independently in many unrelated families. It has been suggested that this inverted symmetry is an essential element of the mechanism that allows for the conformational transitions in transporters. We show here that small multidrug transporters offer a model for the evolution of such repeats. This family includes both homodimers and closely related heterodimers. In the former, the topology determinants, evidently identical in each protomer, are weak, and we show that for EmrE, an homodimer from Escherichia coli, the insertion into the membrane is random, and dimers are functional whether they insert into the cytoplasmic membrane with the N- and C-terminal domains facing the inside or the outside of the cell. Also, mutants designed to insert with biased topology are functional regardless of the topology. In the case of EbrAB, a heterodimer homologue supposed to interact antiparallel, we show that one of the subunits, EbrB, can also function as a homodimer, most likely in a parallel mode. In addition, the EmrE homodimer can be forced to an antiparallel topology by fusion of an additional transmembrane segment. The simplicity of the mechanism of coupling ion and substrate transport and the few requirements for substrate recognition provide the robustness necessary to tolerate such a unique and unprecedented ambiguity in the interaction of the subunits and in the dimer topology relative to the membrane. The results suggest that the small multidrug transporters are at an evolutionary junction and provide a model for the evolution of structure of transport proteins." @default.
- W2029296469 created "2016-06-24" @default.
- W2029296469 creator A5021338031 @default.
- W2029296469 creator A5029719312 @default.
- W2029296469 creator A5071154901 @default.
- W2029296469 creator A5085710905 @default.
- W2029296469 date "2010-05-01" @default.
- W2029296469 modified "2023-09-27" @default.
- W2029296469 title "Topologically Random Insertion of EmrE Supports a Pathway for Evolution of Inverted Repeats in Ion-coupled Transporters" @default.
- W2029296469 cites W1513041431 @default.
- W2029296469 cites W1541707791 @default.
- W2029296469 cites W1601870256 @default.
- W2029296469 cites W1868327346 @default.
- W2029296469 cites W1947778485 @default.
- W2029296469 cites W1968332331 @default.
- W2029296469 cites W1970145423 @default.
- W2029296469 cites W1984899973 @default.
- W2029296469 cites W1985400607 @default.
- W2029296469 cites W1993063963 @default.
- W2029296469 cites W2005434414 @default.
- W2029296469 cites W2006643836 @default.
- W2029296469 cites W2011132293 @default.
- W2029296469 cites W2015912130 @default.
- W2029296469 cites W2018368009 @default.
- W2029296469 cites W2035873802 @default.
- W2029296469 cites W2042534309 @default.
- W2029296469 cites W2047118695 @default.
- W2029296469 cites W2052111270 @default.
- W2029296469 cites W2064156035 @default.
- W2029296469 cites W2067909030 @default.
- W2029296469 cites W2068518785 @default.
- W2029296469 cites W2071122270 @default.
- W2029296469 cites W2071898953 @default.
- W2029296469 cites W2077766083 @default.
- W2029296469 cites W2088095424 @default.
- W2029296469 cites W2092990950 @default.
- W2029296469 cites W2099384461 @default.
- W2029296469 cites W2104622728 @default.
- W2029296469 cites W2108242719 @default.
- W2029296469 cites W2109715166 @default.
- W2029296469 cites W2116137883 @default.
- W2029296469 cites W2117745680 @default.
- W2029296469 cites W2121127710 @default.
- W2029296469 cites W2124130385 @default.
- W2029296469 cites W2124961727 @default.
- W2029296469 cites W2125464091 @default.
- W2029296469 cites W2132067013 @default.
- W2029296469 cites W2141653906 @default.
- W2029296469 cites W2145639052 @default.
- W2029296469 cites W2146640609 @default.
- W2029296469 cites W2147241123 @default.
- W2029296469 cites W2149902375 @default.
- W2029296469 cites W2154470659 @default.
- W2029296469 cites W2157624463 @default.
- W2029296469 cites W2158229474 @default.
- W2029296469 cites W2160695808 @default.
- W2029296469 cites W2161211166 @default.
- W2029296469 cites W2162131537 @default.
- W2029296469 cites W2163733734 @default.
- W2029296469 cites W2164797647 @default.
- W2029296469 cites W2166580191 @default.
- W2029296469 cites W262216995 @default.
- W2029296469 cites W4240422054 @default.
- W2029296469 doi "https://doi.org/10.1074/jbc.m110.108746" @default.
- W2029296469 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2865334" @default.
- W2029296469 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20308069" @default.
- W2029296469 hasPublicationYear "2010" @default.
- W2029296469 type Work @default.
- W2029296469 sameAs 2029296469 @default.
- W2029296469 citedByCount "55" @default.
- W2029296469 countsByYear W20292964692012 @default.
- W2029296469 countsByYear W20292964692013 @default.
- W2029296469 countsByYear W20292964692014 @default.
- W2029296469 countsByYear W20292964692015 @default.
- W2029296469 countsByYear W20292964692016 @default.
- W2029296469 countsByYear W20292964692017 @default.
- W2029296469 countsByYear W20292964692018 @default.
- W2029296469 countsByYear W20292964692019 @default.
- W2029296469 countsByYear W20292964692020 @default.
- W2029296469 countsByYear W20292964692021 @default.
- W2029296469 countsByYear W20292964692022 @default.
- W2029296469 crossrefType "journal-article" @default.
- W2029296469 hasAuthorship W2029296469A5021338031 @default.
- W2029296469 hasAuthorship W2029296469A5029719312 @default.
- W2029296469 hasAuthorship W2029296469A5071154901 @default.
- W2029296469 hasAuthorship W2029296469A5085710905 @default.
- W2029296469 hasBestOaLocation W20292964691 @default.
- W2029296469 hasConcept C104317684 @default.
- W2029296469 hasConcept C114614502 @default.
- W2029296469 hasConcept C115260700 @default.
- W2029296469 hasConcept C118892022 @default.
- W2029296469 hasConcept C121332964 @default.
- W2029296469 hasConcept C12554922 @default.
- W2029296469 hasConcept C141231307 @default.
- W2029296469 hasConcept C142089489 @default.
- W2029296469 hasConcept C170493617 @default.
- W2029296469 hasConcept C178790620 @default.
- W2029296469 hasConcept C184720557 @default.