Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029332330> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2029332330 endingPage "427" @default.
- W2029332330 startingPage "406" @default.
- W2029332330 abstract "A novel approach using artificial neural networks for representing chemical reactions is developed and successfully implemented with a modeled velocity-scalar joint pdf transport equation for H2/CO2 turbulent jet diffusion flames. The chemical kinetics are represented using a three-step reduced mechanism, and the transport equation is solved by a Monte Carlo method. A detailed analysis of computational performance and a comparison between the neural network approach and other methods used to represent the chemistry, namely the look-up table, or the direct integration procedures, are presented. A multilayer perception architecture is chosen for the neural network. The training algorithm is based on a back-propagation supervised learning procedure with individual momentum terms and adaptive learning rate adjustment for the weights matrix. A new procedure for the selection of training samples using dynamic randomization is developed and is aimed at reducing the possibility of the network being trapped in a local minimum. This algorithm achieved an impressive acceleration in convergence compared with the use of a fixed set of selected training samples. The optimization process of the neural network is discussed in detail. The feasibility of using neural network models to represent highly nonlinear chemical reactions is successfully illustrated. The prediction of the flow field and flame characteristics using the neural network approach is in good agreement with those obtained using other methods, and is also in reasonable agreement with the experimental data. The computational benefits of the neural network approach over the look-up table and the direct integration methods, both in CPU time and RAM storage requirements are not great for a chemical mechanisms of less than three reactions. The neural network approach becomes superior, however, for more complex reaction schemes." @default.
- W2029332330 created "2016-06-24" @default.
- W2029332330 creator A5066167231 @default.
- W2029332330 date "1996-09-01" @default.
- W2029332330 modified "2023-10-18" @default.
- W2029332330 title "Artificial neural network implementation of chemistry with pdf simulation of H2/CO2 flames" @default.
- W2029332330 cites W138261515 @default.
- W2029332330 cites W1510374617 @default.
- W2029332330 cites W1603813805 @default.
- W2029332330 cites W1604176317 @default.
- W2029332330 cites W1636658800 @default.
- W2029332330 cites W1966106426 @default.
- W2029332330 cites W1969905088 @default.
- W2029332330 cites W2014644032 @default.
- W2029332330 cites W2019001054 @default.
- W2029332330 cites W2031767248 @default.
- W2029332330 cites W2035377073 @default.
- W2029332330 cites W2037232465 @default.
- W2029332330 cites W2041213036 @default.
- W2029332330 cites W2066949108 @default.
- W2029332330 cites W2089997632 @default.
- W2029332330 cites W2093736075 @default.
- W2029332330 cites W210421424 @default.
- W2029332330 cites W2120062272 @default.
- W2029332330 cites W2139522404 @default.
- W2029332330 cites W2141906015 @default.
- W2029332330 cites W2146144325 @default.
- W2029332330 cites W3017149991 @default.
- W2029332330 cites W3207342693 @default.
- W2029332330 cites W642773657 @default.
- W2029332330 doi "https://doi.org/10.1016/0010-2180(95)00250-2" @default.
- W2029332330 hasPublicationYear "1996" @default.
- W2029332330 type Work @default.
- W2029332330 sameAs 2029332330 @default.
- W2029332330 citedByCount "107" @default.
- W2029332330 countsByYear W20293323302012 @default.
- W2029332330 countsByYear W20293323302013 @default.
- W2029332330 countsByYear W20293323302014 @default.
- W2029332330 countsByYear W20293323302015 @default.
- W2029332330 countsByYear W20293323302016 @default.
- W2029332330 countsByYear W20293323302017 @default.
- W2029332330 countsByYear W20293323302018 @default.
- W2029332330 countsByYear W20293323302019 @default.
- W2029332330 countsByYear W20293323302020 @default.
- W2029332330 countsByYear W20293323302021 @default.
- W2029332330 countsByYear W20293323302022 @default.
- W2029332330 countsByYear W20293323302023 @default.
- W2029332330 crossrefType "journal-article" @default.
- W2029332330 hasAuthorship W2029332330A5066167231 @default.
- W2029332330 hasBestOaLocation W20293323301 @default.
- W2029332330 hasConcept C11413529 @default.
- W2029332330 hasConcept C121332964 @default.
- W2029332330 hasConcept C154945302 @default.
- W2029332330 hasConcept C155032097 @default.
- W2029332330 hasConcept C158622935 @default.
- W2029332330 hasConcept C41008148 @default.
- W2029332330 hasConcept C50644808 @default.
- W2029332330 hasConcept C62520636 @default.
- W2029332330 hasConceptScore W2029332330C11413529 @default.
- W2029332330 hasConceptScore W2029332330C121332964 @default.
- W2029332330 hasConceptScore W2029332330C154945302 @default.
- W2029332330 hasConceptScore W2029332330C155032097 @default.
- W2029332330 hasConceptScore W2029332330C158622935 @default.
- W2029332330 hasConceptScore W2029332330C41008148 @default.
- W2029332330 hasConceptScore W2029332330C50644808 @default.
- W2029332330 hasConceptScore W2029332330C62520636 @default.
- W2029332330 hasIssue "4" @default.
- W2029332330 hasLocation W20293323301 @default.
- W2029332330 hasOpenAccess W2029332330 @default.
- W2029332330 hasPrimaryLocation W20293323301 @default.
- W2029332330 hasRelatedWork W2105899231 @default.
- W2029332330 hasRelatedWork W2154621452 @default.
- W2029332330 hasRelatedWork W2348285757 @default.
- W2029332330 hasRelatedWork W2350832155 @default.
- W2029332330 hasRelatedWork W2362189222 @default.
- W2029332330 hasRelatedWork W2366657520 @default.
- W2029332330 hasRelatedWork W2383491577 @default.
- W2029332330 hasRelatedWork W2391384657 @default.
- W2029332330 hasRelatedWork W2977857027 @default.
- W2029332330 hasRelatedWork W2516580779 @default.
- W2029332330 hasVolume "106" @default.
- W2029332330 isParatext "false" @default.
- W2029332330 isRetracted "false" @default.
- W2029332330 magId "2029332330" @default.
- W2029332330 workType "article" @default.