Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029371524> ?p ?o ?g. }
- W2029371524 endingPage "2446" @default.
- W2029371524 startingPage "2437" @default.
- W2029371524 abstract "This paper advocates an unconventional analytical approach to studying the fractal geometry of percolation at the threshold, which is based on the most general methods of the differential topology. Our particular interest concentrates on the Alexander-Orbach (AO) conjecture [J. Phys. (France) Lett. 43, L625 (1982)], which assigns the universal (mean-field) value $4/3$ to the spectral fractal dimension $stackrel{ifmmode tilde{}else ~{}fi{}}{d}$ at the percolation threshold for all embedding Euclidean dimensions $n$ greater than one, i.e., $n>~2$. Using the topological arguments, we show that the AO conjecture might be improved for the relatively low embedding dimensions $2<~n<~5$, for which the analytical result $stackrel{ifmmode tilde{}else ~{}fi{}}{d}=1.327ifmmodepmelsetextpmfi{}0.001$ is proposed, instead of the original AO estimate $4/3$. Meanwhile we assume that the exact value $stackrel{ifmmode tilde{}else ~{}fi{}}{d}=4/3$ holds for all $n>~6$, as it follows directly from the well-known mean-field theory. The improved value of $stackrel{ifmmode tilde{}else ~{}fi{}}{d}ensuremath{approx}1.327$ for $2<~n<~5$ is obtained from an analysis of the basic topological properties of the percolating fractal sets at the threshold of percolation. We show that these properties could be investigated fruitfully with the introduction of the concept of the fractal manifold, which might serve as an effective instrument when considering the topology of the fractal objects. Our results indicate that the proposed value of $stackrel{ifmmode tilde{}else ~{}fi{}}{d}ensuremath{approx}1.327$ for the spectral dimension at the percolation threshold has the fundamental topological origin related to the most general features of the fractal geometry of percolation at criticality. We argue that the constraint $2<~n<~5$ on the topological dimension $n$ of the embedding Euclidean space is the direct consequence of the famous Whitney theorem, which establishes the embedding properties of manifolds from the viewpoint of their dimensionality. A simple topological condition that identifies the threshold of percolation is obtained for $2<~n<~5$. The particular topological restrictions implied throughout the present study are discussed and the important issue of contractibility of the fractal manifolds is pointed out." @default.
- W2029371524 created "2016-06-24" @default.
- W2029371524 creator A5043387128 @default.
- W2029371524 date "1997-09-01" @default.
- W2029371524 modified "2023-09-27" @default.
- W2029371524 title "Topological proof for the Alexander-Orbach conjecture" @default.
- W2029371524 cites W1988335285 @default.
- W2029371524 cites W1993600744 @default.
- W2029371524 cites W2012788855 @default.
- W2029371524 cites W2022352949 @default.
- W2029371524 cites W2025843255 @default.
- W2029371524 cites W2029093109 @default.
- W2029371524 cites W2030185691 @default.
- W2029371524 cites W2073485865 @default.
- W2029371524 cites W2078206416 @default.
- W2029371524 cites W2106545844 @default.
- W2029371524 cites W2106883211 @default.
- W2029371524 cites W2913328581 @default.
- W2029371524 cites W4211196861 @default.
- W2029371524 cites W4233497874 @default.
- W2029371524 cites W4235840289 @default.
- W2029371524 doi "https://doi.org/10.1103/physreve.56.2437" @default.
- W2029371524 hasPublicationYear "1997" @default.
- W2029371524 type Work @default.
- W2029371524 sameAs 2029371524 @default.
- W2029371524 citedByCount "33" @default.
- W2029371524 countsByYear W20293715242012 @default.
- W2029371524 countsByYear W20293715242013 @default.
- W2029371524 countsByYear W20293715242014 @default.
- W2029371524 countsByYear W20293715242015 @default.
- W2029371524 countsByYear W20293715242016 @default.
- W2029371524 countsByYear W20293715242017 @default.
- W2029371524 countsByYear W20293715242019 @default.
- W2029371524 countsByYear W20293715242021 @default.
- W2029371524 countsByYear W20293715242022 @default.
- W2029371524 countsByYear W20293715242023 @default.
- W2029371524 crossrefType "journal-article" @default.
- W2029371524 hasAuthorship W2029371524A5043387128 @default.
- W2029371524 hasConcept C114614502 @default.
- W2029371524 hasConcept C121332964 @default.
- W2029371524 hasConcept C127413603 @default.
- W2029371524 hasConcept C129782007 @default.
- W2029371524 hasConcept C134306372 @default.
- W2029371524 hasConcept C154945302 @default.
- W2029371524 hasConcept C169760540 @default.
- W2029371524 hasConcept C184720557 @default.
- W2029371524 hasConcept C194198291 @default.
- W2029371524 hasConcept C23707678 @default.
- W2029371524 hasConcept C2524010 @default.
- W2029371524 hasConcept C26546657 @default.
- W2029371524 hasConcept C2729557 @default.
- W2029371524 hasConcept C2780457167 @default.
- W2029371524 hasConcept C2780990831 @default.
- W2029371524 hasConcept C33676613 @default.
- W2029371524 hasConcept C33923547 @default.
- W2029371524 hasConcept C40636538 @default.
- W2029371524 hasConcept C41008148 @default.
- W2029371524 hasConcept C41608201 @default.
- W2029371524 hasConcept C529865628 @default.
- W2029371524 hasConcept C62520636 @default.
- W2029371524 hasConcept C69990965 @default.
- W2029371524 hasConcept C78519656 @default.
- W2029371524 hasConcept C86803240 @default.
- W2029371524 hasConceptScore W2029371524C114614502 @default.
- W2029371524 hasConceptScore W2029371524C121332964 @default.
- W2029371524 hasConceptScore W2029371524C127413603 @default.
- W2029371524 hasConceptScore W2029371524C129782007 @default.
- W2029371524 hasConceptScore W2029371524C134306372 @default.
- W2029371524 hasConceptScore W2029371524C154945302 @default.
- W2029371524 hasConceptScore W2029371524C169760540 @default.
- W2029371524 hasConceptScore W2029371524C184720557 @default.
- W2029371524 hasConceptScore W2029371524C194198291 @default.
- W2029371524 hasConceptScore W2029371524C23707678 @default.
- W2029371524 hasConceptScore W2029371524C2524010 @default.
- W2029371524 hasConceptScore W2029371524C26546657 @default.
- W2029371524 hasConceptScore W2029371524C2729557 @default.
- W2029371524 hasConceptScore W2029371524C2780457167 @default.
- W2029371524 hasConceptScore W2029371524C2780990831 @default.
- W2029371524 hasConceptScore W2029371524C33676613 @default.
- W2029371524 hasConceptScore W2029371524C33923547 @default.
- W2029371524 hasConceptScore W2029371524C40636538 @default.
- W2029371524 hasConceptScore W2029371524C41008148 @default.
- W2029371524 hasConceptScore W2029371524C41608201 @default.
- W2029371524 hasConceptScore W2029371524C529865628 @default.
- W2029371524 hasConceptScore W2029371524C62520636 @default.
- W2029371524 hasConceptScore W2029371524C69990965 @default.
- W2029371524 hasConceptScore W2029371524C78519656 @default.
- W2029371524 hasConceptScore W2029371524C86803240 @default.
- W2029371524 hasIssue "3" @default.
- W2029371524 hasLocation W20293715241 @default.
- W2029371524 hasOpenAccess W2029371524 @default.
- W2029371524 hasPrimaryLocation W20293715241 @default.
- W2029371524 hasRelatedWork W1983673275 @default.
- W2029371524 hasRelatedWork W201553385 @default.
- W2029371524 hasRelatedWork W2022698958 @default.
- W2029371524 hasRelatedWork W2053621563 @default.
- W2029371524 hasRelatedWork W2078732944 @default.
- W2029371524 hasRelatedWork W2093123204 @default.