Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029451851> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2029451851 endingPage "127" @default.
- W2029451851 startingPage "120" @default.
- W2029451851 abstract "Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods." @default.
- W2029451851 created "2016-06-24" @default.
- W2029451851 creator A5000818065 @default.
- W2029451851 creator A5019471410 @default.
- W2029451851 creator A5022789707 @default.
- W2029451851 creator A5038223127 @default.
- W2029451851 creator A5039615242 @default.
- W2029451851 creator A5076311980 @default.
- W2029451851 date "2015-08-01" @default.
- W2029451851 modified "2023-10-16" @default.
- W2029451851 title "Graphics processing unit‐based alignment of protein interaction networks" @default.
- W2029451851 cites W118615843 @default.
- W2029451851 cites W2011652244 @default.
- W2029451851 cites W2046835346 @default.
- W2029451851 cites W2055043387 @default.
- W2029451851 cites W2056903220 @default.
- W2029451851 cites W2092986233 @default.
- W2029451851 cites W2096041635 @default.
- W2029451851 cites W2096801391 @default.
- W2029451851 cites W2130237248 @default.
- W2029451851 cites W2137648512 @default.
- W2029451851 cites W2150056503 @default.
- W2029451851 cites W2153852650 @default.
- W2029451851 cites W2153929049 @default.
- W2029451851 cites W2155834877 @default.
- W2029451851 cites W2167222948 @default.
- W2029451851 doi "https://doi.org/10.1049/iet-syb.2014.0052" @default.
- W2029451851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26243827" @default.
- W2029451851 hasPublicationYear "2015" @default.
- W2029451851 type Work @default.
- W2029451851 sameAs 2029451851 @default.
- W2029451851 citedByCount "3" @default.
- W2029451851 countsByYear W20294518512015 @default.
- W2029451851 countsByYear W20294518512016 @default.
- W2029451851 crossrefType "journal-article" @default.
- W2029451851 hasAuthorship W2029451851A5000818065 @default.
- W2029451851 hasAuthorship W2029451851A5019471410 @default.
- W2029451851 hasAuthorship W2029451851A5022789707 @default.
- W2029451851 hasAuthorship W2029451851A5038223127 @default.
- W2029451851 hasAuthorship W2029451851A5039615242 @default.
- W2029451851 hasAuthorship W2029451851A5076311980 @default.
- W2029451851 hasBestOaLocation W20294518512 @default.
- W2029451851 hasConcept C111919701 @default.
- W2029451851 hasConcept C121684516 @default.
- W2029451851 hasConcept C173608175 @default.
- W2029451851 hasConcept C21442007 @default.
- W2029451851 hasConcept C2779851693 @default.
- W2029451851 hasConcept C41008148 @default.
- W2029451851 hasConcept C459310 @default.
- W2029451851 hasConcept C48677424 @default.
- W2029451851 hasConcept C50630238 @default.
- W2029451851 hasConceptScore W2029451851C111919701 @default.
- W2029451851 hasConceptScore W2029451851C121684516 @default.
- W2029451851 hasConceptScore W2029451851C173608175 @default.
- W2029451851 hasConceptScore W2029451851C21442007 @default.
- W2029451851 hasConceptScore W2029451851C2779851693 @default.
- W2029451851 hasConceptScore W2029451851C41008148 @default.
- W2029451851 hasConceptScore W2029451851C459310 @default.
- W2029451851 hasConceptScore W2029451851C48677424 @default.
- W2029451851 hasConceptScore W2029451851C50630238 @default.
- W2029451851 hasIssue "4" @default.
- W2029451851 hasLocation W20294518511 @default.
- W2029451851 hasLocation W20294518512 @default.
- W2029451851 hasLocation W20294518513 @default.
- W2029451851 hasLocation W20294518514 @default.
- W2029451851 hasOpenAccess W2029451851 @default.
- W2029451851 hasPrimaryLocation W20294518511 @default.
- W2029451851 hasRelatedWork W1517347837 @default.
- W2029451851 hasRelatedWork W2029040955 @default.
- W2029451851 hasRelatedWork W2119534391 @default.
- W2029451851 hasRelatedWork W2146871484 @default.
- W2029451851 hasRelatedWork W2319727539 @default.
- W2029451851 hasRelatedWork W2364686214 @default.
- W2029451851 hasRelatedWork W2377701910 @default.
- W2029451851 hasRelatedWork W2492152311 @default.
- W2029451851 hasRelatedWork W2794923745 @default.
- W2029451851 hasRelatedWork W67367039 @default.
- W2029451851 hasVolume "9" @default.
- W2029451851 isParatext "false" @default.
- W2029451851 isRetracted "false" @default.
- W2029451851 magId "2029451851" @default.
- W2029451851 workType "article" @default.