Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029454297> ?p ?o ?g. }
- W2029454297 endingPage "1513" @default.
- W2029454297 startingPage "1500" @default.
- W2029454297 abstract "Molecular-thermodynamic descriptions of micellization in aqueous media can be utilized to model the self-assembly of surfactants possessing relatively simple chemical structures, where it is possible to identify a priori what equilibrium position they will adopt in the resulting micellar aggregate. For such chemical structures, the portion of the surfactant molecule that is expected to be exposed to water upon aggregate self-assembly can be identified and used as an input to the molecular-thermodynamic description. Unfortunately, for many surfactants possessing more complex chemical structures, it is not clear a priori how they will orient themselves within a micellar aggregate. In this paper, we present a computational approach to identify what portions of a surfactant molecule are hydrated in a micellar environment through the use of molecular dynamics simulations of such molecules at an oil/water interface (modeling the micelle core/water interface). The local environment of each surfactant segment is determined by counting the number of contacts of each segment with the water and oil molecules. After identifying the hydrated and the unhydrated segments of the surfactant molecule, molecular-thermodynamic modeling can be performed to predict: (i) the free-energy change associated with forming a micellar aggregate, (ii) the critical micelle concentration (CMC), and (iii) the optimal shape and size of the micellar aggregate. The computer simulation results were found to be sensitive to the atomic charge parameters utilized during the simulation runs. Two different methods of assigning atomic charges were tested, and the computer simulation and molecular-thermodynamic modeling results obtained using both sets of atomic charges are presented and compared. The combined computer simulation/molecular-thermodynamic modeling approach presented here is validated first by implementing it in the case of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB), zwitterionic (dodecylphosphocholine, DPC), and nonionic (dodecyl poly(ethylene oxide), C12E8) surfactants possessing relatively simple chemical structures and verifying that good predictions of CMCs and micelle aggregation numbers are obtained. In the case of C12E8, the challenges and limitations associated with simulating a single, polymeric E8 moiety at the oil/water interface to model its behavior at the micelle/water interface are discussed. Subsequently, the combined modeling approach is implemented in the case of the anionic surfactant 3-hydroxy sulfonate (AOS) and of the nonionic surfactant decanoyl-n-methylglucamide (MEGA-10), which possess significantly more complex chemical structures. The good predictions obtained for these two surfactants indicate that the combined computer simulation/molecular-thermodynamic modeling approach presented here extends the range of applicability of molecular-thermodynamic theory to allow modeling of the micellization behavior of surfactants possessing more complex chemical structures." @default.
- W2029454297 created "2016-06-24" @default.
- W2029454297 creator A5018317640 @default.
- W2029454297 creator A5029267851 @default.
- W2029454297 creator A5047743413 @default.
- W2029454297 date "2006-01-13" @default.
- W2029454297 modified "2023-10-01" @default.
- W2029454297 title "Complementary Use of Simulations and Molecular-Thermodynamic Theory to Model Micellization" @default.
- W2029454297 cites W1966000531 @default.
- W2029454297 cites W1966138125 @default.
- W2029454297 cites W1969012095 @default.
- W2029454297 cites W1969406192 @default.
- W2029454297 cites W1969705753 @default.
- W2029454297 cites W1971609866 @default.
- W2029454297 cites W1972968283 @default.
- W2029454297 cites W1977854497 @default.
- W2029454297 cites W1981877684 @default.
- W2029454297 cites W1991246002 @default.
- W2029454297 cites W1991910685 @default.
- W2029454297 cites W2008605927 @default.
- W2029454297 cites W2014119798 @default.
- W2029454297 cites W2015639023 @default.
- W2029454297 cites W2028571133 @default.
- W2029454297 cites W2032655419 @default.
- W2029454297 cites W2032902709 @default.
- W2029454297 cites W2033336544 @default.
- W2029454297 cites W2034228483 @default.
- W2029454297 cites W2034539783 @default.
- W2029454297 cites W2035393223 @default.
- W2029454297 cites W2038062561 @default.
- W2029454297 cites W2046388036 @default.
- W2029454297 cites W2047136674 @default.
- W2029454297 cites W2051381895 @default.
- W2029454297 cites W2059966430 @default.
- W2029454297 cites W2060347307 @default.
- W2029454297 cites W2079501411 @default.
- W2029454297 cites W2081852547 @default.
- W2029454297 cites W2083384732 @default.
- W2029454297 cites W2089805846 @default.
- W2029454297 cites W2092759653 @default.
- W2029454297 cites W2093990212 @default.
- W2029454297 cites W2094780881 @default.
- W2029454297 cites W2123768693 @default.
- W2029454297 cites W2124347634 @default.
- W2029454297 cites W2126556989 @default.
- W2029454297 cites W2137701888 @default.
- W2029454297 cites W2138982267 @default.
- W2029454297 cites W2151334055 @default.
- W2029454297 cites W2161065969 @default.
- W2029454297 cites W3014383449 @default.
- W2029454297 cites W3017082821 @default.
- W2029454297 doi "https://doi.org/10.1021/la052042c" @default.
- W2029454297 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16460068" @default.
- W2029454297 hasPublicationYear "2006" @default.
- W2029454297 type Work @default.
- W2029454297 sameAs 2029454297 @default.
- W2029454297 citedByCount "54" @default.
- W2029454297 countsByYear W20294542972012 @default.
- W2029454297 countsByYear W20294542972013 @default.
- W2029454297 countsByYear W20294542972014 @default.
- W2029454297 countsByYear W20294542972015 @default.
- W2029454297 countsByYear W20294542972016 @default.
- W2029454297 countsByYear W20294542972017 @default.
- W2029454297 countsByYear W20294542972018 @default.
- W2029454297 countsByYear W20294542972020 @default.
- W2029454297 countsByYear W20294542972021 @default.
- W2029454297 countsByYear W20294542972022 @default.
- W2029454297 countsByYear W20294542972023 @default.
- W2029454297 crossrefType "journal-article" @default.
- W2029454297 hasAuthorship W2029454297A5018317640 @default.
- W2029454297 hasAuthorship W2029454297A5029267851 @default.
- W2029454297 hasAuthorship W2029454297A5047743413 @default.
- W2029454297 hasConcept C11268172 @default.
- W2029454297 hasConcept C121332964 @default.
- W2029454297 hasConcept C147597530 @default.
- W2029454297 hasConcept C147789679 @default.
- W2029454297 hasConcept C159467904 @default.
- W2029454297 hasConcept C171250308 @default.
- W2029454297 hasConcept C178790620 @default.
- W2029454297 hasConcept C184651966 @default.
- W2029454297 hasConcept C185592680 @default.
- W2029454297 hasConcept C192562407 @default.
- W2029454297 hasConcept C32909587 @default.
- W2029454297 hasConcept C4679612 @default.
- W2029454297 hasConcept C55493867 @default.
- W2029454297 hasConcept C58226133 @default.
- W2029454297 hasConcept C59593255 @default.
- W2029454297 hasConcept C97355855 @default.
- W2029454297 hasConceptScore W2029454297C11268172 @default.
- W2029454297 hasConceptScore W2029454297C121332964 @default.
- W2029454297 hasConceptScore W2029454297C147597530 @default.
- W2029454297 hasConceptScore W2029454297C147789679 @default.
- W2029454297 hasConceptScore W2029454297C159467904 @default.
- W2029454297 hasConceptScore W2029454297C171250308 @default.
- W2029454297 hasConceptScore W2029454297C178790620 @default.
- W2029454297 hasConceptScore W2029454297C184651966 @default.
- W2029454297 hasConceptScore W2029454297C185592680 @default.
- W2029454297 hasConceptScore W2029454297C192562407 @default.