Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029454715> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2029454715 abstract "We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse entities in text. Experiments with several instantiations of these models show that: (i) our models perform on a par with two other well-known models of text coherence even without any parameter tuning, and (ii) reranking retrieval results according to their coherence scores gives notable performance gains, confirming a relation between document coherence and relevance. This work contributes two novel models of document coherence, the application of which to IR complements recent work in the integration of document cohesiveness or comprehensibility to ranking [5, 56]." @default.
- W2029454715 created "2016-06-24" @default.
- W2029454715 creator A5016676280 @default.
- W2029454715 creator A5024664299 @default.
- W2029454715 creator A5038943466 @default.
- W2029454715 creator A5045425016 @default.
- W2029454715 date "2015-09-27" @default.
- W2029454715 modified "2023-09-24" @default.
- W2029454715 title "Entropy and Graph Based Modelling of Document Coherence using Discourse Entities" @default.
- W2029454715 cites W1685426458 @default.
- W2029454715 cites W1969743400 @default.
- W2029454715 cites W1974595223 @default.
- W2029454715 cites W1975155103 @default.
- W2029454715 cites W1993924397 @default.
- W2029454715 cites W1995875735 @default.
- W2029454715 cites W2044340178 @default.
- W2029454715 cites W2046353967 @default.
- W2029454715 cites W2050277298 @default.
- W2029454715 cites W2060108852 @default.
- W2029454715 cites W2066055909 @default.
- W2029454715 cites W2066636486 @default.
- W2029454715 cites W2086297729 @default.
- W2029454715 cites W2089150068 @default.
- W2029454715 cites W2099580784 @default.
- W2029454715 cites W2109115148 @default.
- W2029454715 cites W2111499444 @default.
- W2029454715 cites W2127635582 @default.
- W2029454715 cites W2140676672 @default.
- W2029454715 cites W2146213370 @default.
- W2029454715 cites W2160885631 @default.
- W2029454715 cites W2163796172 @default.
- W2029454715 cites W2169546346 @default.
- W2029454715 cites W2170524863 @default.
- W2029454715 cites W4210726578 @default.
- W2029454715 cites W4232224933 @default.
- W2029454715 doi "https://doi.org/10.1145/2808194.2809458" @default.
- W2029454715 hasPublicationYear "2015" @default.
- W2029454715 type Work @default.
- W2029454715 sameAs 2029454715 @default.
- W2029454715 citedByCount "15" @default.
- W2029454715 countsByYear W20294547152016 @default.
- W2029454715 countsByYear W20294547152017 @default.
- W2029454715 countsByYear W20294547152018 @default.
- W2029454715 countsByYear W20294547152021 @default.
- W2029454715 countsByYear W20294547152022 @default.
- W2029454715 crossrefType "proceedings-article" @default.
- W2029454715 hasAuthorship W2029454715A5016676280 @default.
- W2029454715 hasAuthorship W2029454715A5024664299 @default.
- W2029454715 hasAuthorship W2029454715A5038943466 @default.
- W2029454715 hasAuthorship W2029454715A5045425016 @default.
- W2029454715 hasConcept C105795698 @default.
- W2029454715 hasConcept C106301342 @default.
- W2029454715 hasConcept C121332964 @default.
- W2029454715 hasConcept C154945302 @default.
- W2029454715 hasConcept C204321447 @default.
- W2029454715 hasConcept C2781181686 @default.
- W2029454715 hasConcept C33923547 @default.
- W2029454715 hasConcept C41008148 @default.
- W2029454715 hasConcept C62520636 @default.
- W2029454715 hasConceptScore W2029454715C105795698 @default.
- W2029454715 hasConceptScore W2029454715C106301342 @default.
- W2029454715 hasConceptScore W2029454715C121332964 @default.
- W2029454715 hasConceptScore W2029454715C154945302 @default.
- W2029454715 hasConceptScore W2029454715C204321447 @default.
- W2029454715 hasConceptScore W2029454715C2781181686 @default.
- W2029454715 hasConceptScore W2029454715C33923547 @default.
- W2029454715 hasConceptScore W2029454715C41008148 @default.
- W2029454715 hasConceptScore W2029454715C62520636 @default.
- W2029454715 hasLocation W20294547151 @default.
- W2029454715 hasOpenAccess W2029454715 @default.
- W2029454715 hasPrimaryLocation W20294547151 @default.
- W2029454715 hasRelatedWork W1515542156 @default.
- W2029454715 hasRelatedWork W1552159754 @default.
- W2029454715 hasRelatedWork W2131420137 @default.
- W2029454715 hasRelatedWork W2148757832 @default.
- W2029454715 hasRelatedWork W2293457016 @default.
- W2029454715 hasRelatedWork W2368651715 @default.
- W2029454715 hasRelatedWork W2611614995 @default.
- W2029454715 hasRelatedWork W2789919619 @default.
- W2029454715 hasRelatedWork W3107474891 @default.
- W2029454715 hasRelatedWork W3169305685 @default.
- W2029454715 isParatext "false" @default.
- W2029454715 isRetracted "false" @default.
- W2029454715 magId "2029454715" @default.
- W2029454715 workType "article" @default.