Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029502641> ?p ?o ?g. }
- W2029502641 endingPage "2410" @default.
- W2029502641 startingPage "2398" @default.
- W2029502641 abstract "Glucocorticoids (GC)—corticosterone (CORT) in rodents and cortisol in primates—are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH–DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted elevations in both BDNF and pCREB in ADX DR rats compared to the other groups; whereas, HSP-70, was equivalently elevated in ADX-DR and SH–DR groups and was higher than observed in both SH-AL and ADX-AL groups. These results support findings that DR protects hippocampal neurons against KA-induced cellular insult. However, this neuroprotective effect was further enhanced in rats with a lower-than control level of CORT resulting from ADX and maintained by exogenous CORT supplementation. Our results then suggest that DR-induced physiological elevation of GC may have negative functional consequences to DR-induced beneficial effects. These negative effects, however, can be compensated by other DR-produced cellular and molecular protective mechanisms." @default.
- W2029502641 created "2016-06-24" @default.
- W2029502641 creator A5005434770 @default.
- W2029502641 creator A5033786807 @default.
- W2029502641 creator A5044264789 @default.
- W2029502641 creator A5052591229 @default.
- W2029502641 creator A5054964044 @default.
- W2029502641 creator A5071517776 @default.
- W2029502641 creator A5071653476 @default.
- W2029502641 creator A5083040475 @default.
- W2029502641 creator A5089216623 @default.
- W2029502641 date "2012-10-01" @default.
- W2029502641 modified "2023-10-06" @default.
- W2029502641 title "Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids" @default.
- W2029502641 cites W1550462067 @default.
- W2029502641 cites W1920785023 @default.
- W2029502641 cites W1971811708 @default.
- W2029502641 cites W1975005144 @default.
- W2029502641 cites W1975959567 @default.
- W2029502641 cites W1976897228 @default.
- W2029502641 cites W1976932559 @default.
- W2029502641 cites W1977550486 @default.
- W2029502641 cites W1979398121 @default.
- W2029502641 cites W1980212785 @default.
- W2029502641 cites W1982692135 @default.
- W2029502641 cites W1982854390 @default.
- W2029502641 cites W1985329474 @default.
- W2029502641 cites W1987375729 @default.
- W2029502641 cites W1987621552 @default.
- W2029502641 cites W1990035761 @default.
- W2029502641 cites W2005880537 @default.
- W2029502641 cites W2012719201 @default.
- W2029502641 cites W2017622420 @default.
- W2029502641 cites W2024518534 @default.
- W2029502641 cites W2032651138 @default.
- W2029502641 cites W2033739347 @default.
- W2029502641 cites W2040677853 @default.
- W2029502641 cites W2043280274 @default.
- W2029502641 cites W2044015546 @default.
- W2029502641 cites W2045618061 @default.
- W2029502641 cites W2053032855 @default.
- W2029502641 cites W2057808707 @default.
- W2029502641 cites W2059109913 @default.
- W2029502641 cites W2071804866 @default.
- W2029502641 cites W2072995817 @default.
- W2029502641 cites W2077797084 @default.
- W2029502641 cites W2100842885 @default.
- W2029502641 cites W2105135681 @default.
- W2029502641 cites W2109158936 @default.
- W2029502641 cites W2109516616 @default.
- W2029502641 cites W2111402656 @default.
- W2029502641 cites W2111405228 @default.
- W2029502641 cites W2117181706 @default.
- W2029502641 cites W2126912370 @default.
- W2029502641 cites W2126944230 @default.
- W2029502641 cites W2133315140 @default.
- W2029502641 cites W2133850147 @default.
- W2029502641 cites W2134033459 @default.
- W2029502641 cites W2136827845 @default.
- W2029502641 cites W2138605034 @default.
- W2029502641 cites W2143579765 @default.
- W2029502641 cites W2146310895 @default.
- W2029502641 cites W2154135114 @default.
- W2029502641 cites W2156048764 @default.
- W2029502641 cites W2162015134 @default.
- W2029502641 cites W2169259762 @default.
- W2029502641 cites W2170445507 @default.
- W2029502641 cites W2171667805 @default.
- W2029502641 cites W2190952443 @default.
- W2029502641 cites W2328966211 @default.
- W2029502641 doi "https://doi.org/10.1016/j.neurobiolaging.2011.11.025" @default.
- W2029502641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3374050" @default.
- W2029502641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22226488" @default.
- W2029502641 hasPublicationYear "2012" @default.
- W2029502641 type Work @default.
- W2029502641 sameAs 2029502641 @default.
- W2029502641 citedByCount "34" @default.
- W2029502641 countsByYear W20295026412013 @default.
- W2029502641 countsByYear W20295026412014 @default.
- W2029502641 countsByYear W20295026412015 @default.
- W2029502641 countsByYear W20295026412016 @default.
- W2029502641 countsByYear W20295026412017 @default.
- W2029502641 countsByYear W20295026412018 @default.
- W2029502641 countsByYear W20295026412019 @default.
- W2029502641 countsByYear W20295026412021 @default.
- W2029502641 countsByYear W20295026412022 @default.
- W2029502641 crossrefType "journal-article" @default.
- W2029502641 hasAuthorship W2029502641A5005434770 @default.
- W2029502641 hasAuthorship W2029502641A5033786807 @default.
- W2029502641 hasAuthorship W2029502641A5044264789 @default.
- W2029502641 hasAuthorship W2029502641A5052591229 @default.
- W2029502641 hasAuthorship W2029502641A5054964044 @default.
- W2029502641 hasAuthorship W2029502641A5071517776 @default.
- W2029502641 hasAuthorship W2029502641A5071653476 @default.
- W2029502641 hasAuthorship W2029502641A5083040475 @default.
- W2029502641 hasAuthorship W2029502641A5089216623 @default.
- W2029502641 hasBestOaLocation W20295026411 @default.
- W2029502641 hasConcept C126322002 @default.