Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029509946> ?p ?o ?g. }
- W2029509946 endingPage "1195" @default.
- W2029509946 startingPage "1182" @default.
- W2029509946 abstract "Transition metal catalysis is a powerful means of effecting organic reactions, but it has some inherent drawbacks, such as the cost of the catalyst and the toxicity of the metals. Organocatalysis represents an attractive alternative and, in some cases, offers transformations unparalleled in metal catalysis. Unique transformations are a particular hallmark of N-heterocyclic carbene (NHC) organocatalysis, a versatile method for which a number of modes of action are known. The NHC-catalyzed umpolung (that is, the inversion of polarity) of electrophilic aldehydes, through formation of the nucleophilic Breslow intermediate, is probably the most important mode of action. In this Account, we discuss the reaction of Breslow intermediates with unconventional reaction partners.In two traditional umpolung reactions, the benzoin condensation and the Stetter reaction, some selectivity issues represent significant challenges, especially in intermolecular variants of these reactions. In intermolecular cross-benzoin reactions, high levels of selectivity were recently obtained, even in the hydroxymethylation of aldehydes with formaldehyde. The key to success was careful choice of the NHC catalyst and reaction conditions. Among asymmetric Stetter reactions, intermolecular versions have posed a long-standing challenge. Recently, the groups of Enders and Rovis reported the first selective and efficient systems. We have contributed to this field by developing an efficient intermolecular Stetter reaction for the formation of α-amino acid derivatives, with broad aldehyde scope and high enantiomeric excess.Moreover, tailor-made thiazolylidene catalysts allowed the unprecedented use of nonactivated olefins and alkynes as aldehyde coupling partners. The basis for this reactivity is a unique mode of NHC organocatalysis: dual activation. In a concerted but asynchronous transition state, the positively polarized proton of the Breslow intermediate activates the coupling partner (for example, an olefin), while the nucleophilic enamine moiety starts to attack the activated coupling partner. As a consequence of the concerted nature of this mechanism, excellent values for enantiomeric excess were obtained for many substrates in the intramolecular hydroacylation of alkenes. In addition, thiazolylidene catalysts have enabled the coupling of aldehydes with reactive species, for example, with arynes and with activated alkyl bromides.NHC catalysis should continue to flourish and lead to surprising developments. One remaining challenge is the asymmetric intermolecular hydroacylation of unactivated olefins. In this area, metal-based catalysts have shown promising early results, but they are far from being either general or practical. It will be interesting to see which class of catalyst, whether metal-based or NHC-based, eventually develops into the method of choice." @default.
- W2029509946 created "2016-06-24" @default.
- W2029509946 creator A5017167322 @default.
- W2029509946 creator A5055710900 @default.
- W2029509946 creator A5086702081 @default.
- W2029509946 date "2011-07-13" @default.
- W2029509946 modified "2023-10-17" @default.
- W2029509946 title "Extending NHC-Catalysis: Coupling Aldehydes with Unconventional Reaction Partners" @default.
- W2029509946 cites W1968478013 @default.
- W2029509946 cites W1974455243 @default.
- W2029509946 cites W1981782681 @default.
- W2029509946 cites W1985635340 @default.
- W2029509946 cites W1987894799 @default.
- W2029509946 cites W1988528132 @default.
- W2029509946 cites W1990510053 @default.
- W2029509946 cites W1991312972 @default.
- W2029509946 cites W1991983741 @default.
- W2029509946 cites W1994515375 @default.
- W2029509946 cites W1995227684 @default.
- W2029509946 cites W1999718089 @default.
- W2029509946 cites W2005227604 @default.
- W2029509946 cites W2006009683 @default.
- W2029509946 cites W2011161714 @default.
- W2029509946 cites W2012767952 @default.
- W2029509946 cites W2016163011 @default.
- W2029509946 cites W2018702845 @default.
- W2029509946 cites W2021528098 @default.
- W2029509946 cites W2022503557 @default.
- W2029509946 cites W2022670739 @default.
- W2029509946 cites W2028776606 @default.
- W2029509946 cites W2033249138 @default.
- W2029509946 cites W2034837626 @default.
- W2029509946 cites W2036037992 @default.
- W2029509946 cites W2038092103 @default.
- W2029509946 cites W2041800381 @default.
- W2029509946 cites W2046286719 @default.
- W2029509946 cites W2046802381 @default.
- W2029509946 cites W2046868245 @default.
- W2029509946 cites W2048177606 @default.
- W2029509946 cites W2051696120 @default.
- W2029509946 cites W2051874798 @default.
- W2029509946 cites W2053367842 @default.
- W2029509946 cites W2054213170 @default.
- W2029509946 cites W2055009064 @default.
- W2029509946 cites W2058367938 @default.
- W2029509946 cites W2061767551 @default.
- W2029509946 cites W2063090974 @default.
- W2029509946 cites W2063911544 @default.
- W2029509946 cites W2066942191 @default.
- W2029509946 cites W2067226609 @default.
- W2029509946 cites W2071411334 @default.
- W2029509946 cites W2077250079 @default.
- W2029509946 cites W2079554294 @default.
- W2029509946 cites W2081185292 @default.
- W2029509946 cites W2082985076 @default.
- W2029509946 cites W2083357654 @default.
- W2029509946 cites W2085157281 @default.
- W2029509946 cites W2086169070 @default.
- W2029509946 cites W2088460631 @default.
- W2029509946 cites W2098620764 @default.
- W2029509946 cites W2106669819 @default.
- W2029509946 cites W2107048665 @default.
- W2029509946 cites W2109254975 @default.
- W2029509946 cites W2110838155 @default.
- W2029509946 cites W2116915758 @default.
- W2029509946 cites W2116964723 @default.
- W2029509946 cites W2126458549 @default.
- W2029509946 cites W2128398702 @default.
- W2029509946 cites W2141598365 @default.
- W2029509946 cites W2148525227 @default.
- W2029509946 cites W2151680071 @default.
- W2029509946 cites W2153321707 @default.
- W2029509946 cites W2156702966 @default.
- W2029509946 cites W2166450817 @default.
- W2029509946 cites W2167299139 @default.
- W2029509946 cites W2171030833 @default.
- W2029509946 cites W2313856024 @default.
- W2029509946 cites W2320163706 @default.
- W2029509946 cites W2320357173 @default.
- W2029509946 cites W2895843679 @default.
- W2029509946 cites W2949092317 @default.
- W2029509946 cites W2953159798 @default.
- W2029509946 cites W2953362775 @default.
- W2029509946 cites W4230047188 @default.
- W2029509946 doi "https://doi.org/10.1021/ar2000716" @default.
- W2029509946 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21751790" @default.
- W2029509946 hasPublicationYear "2011" @default.
- W2029509946 type Work @default.
- W2029509946 sameAs 2029509946 @default.
- W2029509946 citedByCount "670" @default.
- W2029509946 countsByYear W20295099462012 @default.
- W2029509946 countsByYear W20295099462013 @default.
- W2029509946 countsByYear W20295099462014 @default.
- W2029509946 countsByYear W20295099462015 @default.
- W2029509946 countsByYear W20295099462016 @default.
- W2029509946 countsByYear W20295099462017 @default.
- W2029509946 countsByYear W20295099462018 @default.
- W2029509946 countsByYear W20295099462019 @default.