Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029626567> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2029626567 endingPage "1234" @default.
- W2029626567 startingPage "1227" @default.
- W2029626567 abstract "Abstract The fluidized beds are widely used in a variety of industries where heat transfer properties of the fluidized system become important for successful operation. Fluidized are preferred in heat recovery processes because of their unique ability of rapid heat transfer and uniform temperature. Fine powders handling and processing technologies have received widespread attention due to increased use of fine powders in the manufacture of drugs, cosmetics, plastics, catalysts, energetics and other advanced materials. A better understanding of fluidization behavior of fine powders is of great importance in applications involving heat transfer, mass transfer, mixing, transporting and modifying surface properties etc. The difficulty in putting the fine powders in suspension with the fluidizing gas is related to the cohesive structure and to the physical forces between the primary particles. The sound waves agitate bubbling and this results in improving solids mixing in the fluidized bed. The improved solids mixing results in uniform and smooth fluidization, which leads to better heat transfer rates in the fluidized bed. The heat transfer for different sized particles at different acoustic conditions, gas velocities and angular positions around the circumference of heat transfer surface was investigated. Optimum fluidization velocities and acoustic conditions to obtain maximum heat transfer rates from the heat transfer surface to the bed material were found out. Most of the research work in heat transfer in bubbling fluidized beds is focused on Geldart B and D particles. Very little information is available for heat transfer with fine powders belonging to Geldart groups C and A category. The heat transfer between a bubbling fluidized bed of fine powders with an immersed heating surface in absence and presence of acoustic waves was investigated. Acoustic energy of sufficient intensity and sound pressure level significantly improved the quality of fluidization of fine powders. Heat transfer rates could be improved by the oscillation of the particles at certain frequencies. The heat transfer intensity strongly depended upon the angular position along the circumference of the heat transfer surface. The location for maximum heat transfer rates was at the sides of the tube and shifted upward at higher gas velocities. Acoustic waves had very little effect on heat transfer for coarse grained particles. However, heat transfer rates improved appreciably for fine powders under acoustic conditions. The data for local and average heat transfer coefficients is presented as a function of excess air velocity and sound pressure level." @default.
- W2029626567 created "2016-06-24" @default.
- W2029626567 creator A5008511031 @default.
- W2029626567 creator A5040736590 @default.
- W2029626567 creator A5082689427 @default.
- W2029626567 date "2011-11-01" @default.
- W2029626567 modified "2023-09-27" @default.
- W2029626567 title "Effect of acoustic field on heat transfer in a sound assisted fluidized bed of fine powders" @default.
- W2029626567 cites W1603393130 @default.
- W2029626567 cites W1967638604 @default.
- W2029626567 cites W1971122534 @default.
- W2029626567 cites W1972726154 @default.
- W2029626567 cites W1980342742 @default.
- W2029626567 cites W2002119088 @default.
- W2029626567 cites W2003702806 @default.
- W2029626567 cites W2009211087 @default.
- W2029626567 cites W2014588805 @default.
- W2029626567 cites W2015345116 @default.
- W2029626567 cites W2020258373 @default.
- W2029626567 cites W2023736327 @default.
- W2029626567 cites W2032033257 @default.
- W2029626567 cites W2046613035 @default.
- W2029626567 cites W2049588963 @default.
- W2029626567 cites W2056455885 @default.
- W2029626567 cites W2060393961 @default.
- W2029626567 cites W2061825372 @default.
- W2029626567 cites W2071569083 @default.
- W2029626567 cites W2086564349 @default.
- W2029626567 cites W2091251981 @default.
- W2029626567 cites W4300983779 @default.
- W2029626567 cites W2063868799 @default.
- W2029626567 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.015" @default.
- W2029626567 hasPublicationYear "2011" @default.
- W2029626567 type Work @default.
- W2029626567 sameAs 2029626567 @default.
- W2029626567 citedByCount "15" @default.
- W2029626567 countsByYear W20296265672013 @default.
- W2029626567 countsByYear W20296265672015 @default.
- W2029626567 countsByYear W20296265672016 @default.
- W2029626567 countsByYear W20296265672017 @default.
- W2029626567 countsByYear W20296265672020 @default.
- W2029626567 countsByYear W20296265672021 @default.
- W2029626567 crossrefType "journal-article" @default.
- W2029626567 hasAuthorship W2029626567A5008511031 @default.
- W2029626567 hasAuthorship W2029626567A5040736590 @default.
- W2029626567 hasAuthorship W2029626567A5082689427 @default.
- W2029626567 hasConcept C121332964 @default.
- W2029626567 hasConcept C192562407 @default.
- W2029626567 hasConcept C203718221 @default.
- W2029626567 hasConcept C2084832 @default.
- W2029626567 hasConcept C24890656 @default.
- W2029626567 hasConcept C50517652 @default.
- W2029626567 hasConcept C57879066 @default.
- W2029626567 hasConcept C97355855 @default.
- W2029626567 hasConceptScore W2029626567C121332964 @default.
- W2029626567 hasConceptScore W2029626567C192562407 @default.
- W2029626567 hasConceptScore W2029626567C203718221 @default.
- W2029626567 hasConceptScore W2029626567C2084832 @default.
- W2029626567 hasConceptScore W2029626567C24890656 @default.
- W2029626567 hasConceptScore W2029626567C50517652 @default.
- W2029626567 hasConceptScore W2029626567C57879066 @default.
- W2029626567 hasConceptScore W2029626567C97355855 @default.
- W2029626567 hasIssue "9" @default.
- W2029626567 hasLocation W20296265671 @default.
- W2029626567 hasOpenAccess W2029626567 @default.
- W2029626567 hasPrimaryLocation W20296265671 @default.
- W2029626567 hasRelatedWork W1971118083 @default.
- W2029626567 hasRelatedWork W2012605863 @default.
- W2029626567 hasRelatedWork W2740347147 @default.
- W2029626567 hasRelatedWork W2775902113 @default.
- W2029626567 hasRelatedWork W4211182446 @default.
- W2029626567 hasRelatedWork W4233773735 @default.
- W2029626567 hasRelatedWork W4235181573 @default.
- W2029626567 hasRelatedWork W4245868110 @default.
- W2029626567 hasRelatedWork W4252487970 @default.
- W2029626567 hasRelatedWork W4255839737 @default.
- W2029626567 hasVolume "37" @default.
- W2029626567 isParatext "false" @default.
- W2029626567 isRetracted "false" @default.
- W2029626567 magId "2029626567" @default.
- W2029626567 workType "article" @default.