Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029643675> ?p ?o ?g. }
- W2029643675 abstract "Cluster analysis is an unsupervised learning technique of partitioning objects into several homogeneous groups. If noises are included in the data set, they should be eliminated in the course of clustering. Although soft clustering methods can handle noise-included data, most of them do not give an appropriate guideline for discriminating noise objects from significant objects. We propose a multiple testing procedure to filter out noises and cluster significant objects while simultaneously maintaining the decision error within the target level. To handle high-dimensional data, we reduce the dimension of attributes by using the principal component analysis and model the objects using the Gaussian mixture. The proposed two-phase procedure is effective in noise separation and in estimation of Gaussian mixture. We applied the proposed procedure to two real and two synthetic data sets. Experimental results show that the proposed method works effectively for high-dimensional data." @default.
- W2029643675 created "2016-06-24" @default.
- W2029643675 creator A5016824496 @default.
- W2029643675 creator A5065701558 @default.
- W2029643675 date "2013-01-01" @default.
- W2029643675 modified "2023-10-17" @default.
- W2029643675 title "PCA-based high-dimensional noisy data clustering via control of decision errors" @default.
- W2029643675 cites W1506806321 @default.
- W2029643675 cites W1565377632 @default.
- W2029643675 cites W1663973292 @default.
- W2029643675 cites W1938740620 @default.
- W2029643675 cites W1965138864 @default.
- W2029643675 cites W1975120776 @default.
- W2029643675 cites W1981200579 @default.
- W2029643675 cites W1984366963 @default.
- W2029643675 cites W2047555270 @default.
- W2029643675 cites W2066009341 @default.
- W2029643675 cites W2076704345 @default.
- W2029643675 cites W2084812512 @default.
- W2029643675 cites W2105381419 @default.
- W2029643675 cites W2110065044 @default.
- W2029643675 cites W2144792853 @default.
- W2029643675 cites W2153233077 @default.
- W2029643675 cites W2171468830 @default.
- W2029643675 cites W2171485467 @default.
- W2029643675 cites W2799061466 @default.
- W2029643675 cites W3099514962 @default.
- W2029643675 cites W84169795 @default.
- W2029643675 doi "https://doi.org/10.1016/j.knosys.2012.08.013" @default.
- W2029643675 hasPublicationYear "2013" @default.
- W2029643675 type Work @default.
- W2029643675 sameAs 2029643675 @default.
- W2029643675 citedByCount "7" @default.
- W2029643675 countsByYear W20296436752015 @default.
- W2029643675 countsByYear W20296436752017 @default.
- W2029643675 countsByYear W20296436752018 @default.
- W2029643675 countsByYear W20296436752019 @default.
- W2029643675 countsByYear W20296436752020 @default.
- W2029643675 countsByYear W20296436752021 @default.
- W2029643675 crossrefType "journal-article" @default.
- W2029643675 hasAuthorship W2029643675A5016824496 @default.
- W2029643675 hasAuthorship W2029643675A5065701558 @default.
- W2029643675 hasConcept C106131492 @default.
- W2029643675 hasConcept C115961682 @default.
- W2029643675 hasConcept C124101348 @default.
- W2029643675 hasConcept C153180895 @default.
- W2029643675 hasConcept C154945302 @default.
- W2029643675 hasConcept C184509293 @default.
- W2029643675 hasConcept C202444582 @default.
- W2029643675 hasConcept C27438332 @default.
- W2029643675 hasConcept C31972630 @default.
- W2029643675 hasConcept C33676613 @default.
- W2029643675 hasConcept C33923547 @default.
- W2029643675 hasConcept C41008148 @default.
- W2029643675 hasConcept C4199805 @default.
- W2029643675 hasConcept C58489278 @default.
- W2029643675 hasConcept C61224824 @default.
- W2029643675 hasConcept C73555534 @default.
- W2029643675 hasConcept C99498987 @default.
- W2029643675 hasConceptScore W2029643675C106131492 @default.
- W2029643675 hasConceptScore W2029643675C115961682 @default.
- W2029643675 hasConceptScore W2029643675C124101348 @default.
- W2029643675 hasConceptScore W2029643675C153180895 @default.
- W2029643675 hasConceptScore W2029643675C154945302 @default.
- W2029643675 hasConceptScore W2029643675C184509293 @default.
- W2029643675 hasConceptScore W2029643675C202444582 @default.
- W2029643675 hasConceptScore W2029643675C27438332 @default.
- W2029643675 hasConceptScore W2029643675C31972630 @default.
- W2029643675 hasConceptScore W2029643675C33676613 @default.
- W2029643675 hasConceptScore W2029643675C33923547 @default.
- W2029643675 hasConceptScore W2029643675C41008148 @default.
- W2029643675 hasConceptScore W2029643675C4199805 @default.
- W2029643675 hasConceptScore W2029643675C58489278 @default.
- W2029643675 hasConceptScore W2029643675C61224824 @default.
- W2029643675 hasConceptScore W2029643675C73555534 @default.
- W2029643675 hasConceptScore W2029643675C99498987 @default.
- W2029643675 hasLocation W20296436751 @default.
- W2029643675 hasOpenAccess W2029643675 @default.
- W2029643675 hasPrimaryLocation W20296436751 @default.
- W2029643675 hasRelatedWork W1454754324 @default.
- W2029643675 hasRelatedWork W1484310925 @default.
- W2029643675 hasRelatedWork W1560873332 @default.
- W2029643675 hasRelatedWork W1931408466 @default.
- W2029643675 hasRelatedWork W1966489542 @default.
- W2029643675 hasRelatedWork W1981717048 @default.
- W2029643675 hasRelatedWork W2030924161 @default.
- W2029643675 hasRelatedWork W2095401277 @default.
- W2029643675 hasRelatedWork W2096660583 @default.
- W2029643675 hasRelatedWork W2107483511 @default.
- W2029643675 hasRelatedWork W2162754503 @default.
- W2029643675 hasRelatedWork W2293100587 @default.
- W2029643675 hasRelatedWork W2614428976 @default.
- W2029643675 hasRelatedWork W2964196804 @default.
- W2029643675 hasRelatedWork W2998196025 @default.
- W2029643675 hasRelatedWork W3113432686 @default.
- W2029643675 hasRelatedWork W8597964 @default.
- W2029643675 hasRelatedWork W2836550259 @default.
- W2029643675 hasRelatedWork W2840103154 @default.
- W2029643675 hasRelatedWork W292492356 @default.
- W2029643675 isParatext "false" @default.