Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029655008> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2029655008 abstract "In manipulation tasks, skills are usually modeled using the continuous motion trajectories acquired in the task space. The motion trajectories obtained from a human's multiple demonstrations can be broadly divided into four portions, according to the spatial variations between the demonstrations and the time spent in the demonstrations: the portions in which a long/short time is spent, and those in which the spatial variations are large/small. In these four portions, the portions in which a long time is spent and the spatial variation is small (e.g., passing a thread through the eye of a needle) are usually modeled using a small number of parameters, even if such portions represent the movement that is essential for achieving the task. The reason for this is that these portions are slightly changed in the task space as compared with the other portions. In fact, such portions should be densely modeled using more parameters (i.e., overfitting) to improve the performance of the skill because the movements of those portions must be accurately executed to achieve the task. In this paper, we propose a method for adaptively fitting these skills based on the temporal and the spatial entropies calculated by a Gaussian mixture model. We found that it is possible to retrieve accurate motion trajectories as compared with those of well-fitted models, whereas the estimation performance is generally higher than that of an overfitted model. To validate our proposed method, we present the experimental results and evaluations when using a robot arm that performed two tasks." @default.
- W2029655008 created "2016-06-24" @default.
- W2029655008 creator A5030410269 @default.
- W2029655008 creator A5036098613 @default.
- W2029655008 creator A5063255292 @default.
- W2029655008 creator A5085649630 @default.
- W2029655008 date "2013-05-01" @default.
- W2029655008 modified "2023-09-28" @default.
- W2029655008 title "Skill learning using temporal and spatial entropies for accurate skill acquisition" @default.
- W2029655008 cites W1658960529 @default.
- W2029655008 cites W2016765487 @default.
- W2029655008 cites W2043152589 @default.
- W2029655008 cites W2063182199 @default.
- W2029655008 cites W2091797369 @default.
- W2029655008 cites W2104171826 @default.
- W2029655008 cites W2116226448 @default.
- W2029655008 cites W2122480991 @default.
- W2029655008 cites W2128221272 @default.
- W2029655008 cites W2128677288 @default.
- W2029655008 cites W2134858017 @default.
- W2029655008 cites W2161395589 @default.
- W2029655008 cites W3150945973 @default.
- W2029655008 doi "https://doi.org/10.1109/icra.2013.6630742" @default.
- W2029655008 hasPublicationYear "2013" @default.
- W2029655008 type Work @default.
- W2029655008 sameAs 2029655008 @default.
- W2029655008 citedByCount "5" @default.
- W2029655008 countsByYear W20296550082013 @default.
- W2029655008 countsByYear W20296550082014 @default.
- W2029655008 countsByYear W20296550082016 @default.
- W2029655008 countsByYear W20296550082017 @default.
- W2029655008 crossrefType "proceedings-article" @default.
- W2029655008 hasAuthorship W2029655008A5030410269 @default.
- W2029655008 hasAuthorship W2029655008A5036098613 @default.
- W2029655008 hasAuthorship W2029655008A5063255292 @default.
- W2029655008 hasAuthorship W2029655008A5085649630 @default.
- W2029655008 hasConcept C104114177 @default.
- W2029655008 hasConcept C119857082 @default.
- W2029655008 hasConcept C121332964 @default.
- W2029655008 hasConcept C153180895 @default.
- W2029655008 hasConcept C154945302 @default.
- W2029655008 hasConcept C162324750 @default.
- W2029655008 hasConcept C163716315 @default.
- W2029655008 hasConcept C187736073 @default.
- W2029655008 hasConcept C22019652 @default.
- W2029655008 hasConcept C2780451532 @default.
- W2029655008 hasConcept C31972630 @default.
- W2029655008 hasConcept C41008148 @default.
- W2029655008 hasConcept C50644808 @default.
- W2029655008 hasConcept C61326573 @default.
- W2029655008 hasConcept C62520636 @default.
- W2029655008 hasConcept C90509273 @default.
- W2029655008 hasConceptScore W2029655008C104114177 @default.
- W2029655008 hasConceptScore W2029655008C119857082 @default.
- W2029655008 hasConceptScore W2029655008C121332964 @default.
- W2029655008 hasConceptScore W2029655008C153180895 @default.
- W2029655008 hasConceptScore W2029655008C154945302 @default.
- W2029655008 hasConceptScore W2029655008C162324750 @default.
- W2029655008 hasConceptScore W2029655008C163716315 @default.
- W2029655008 hasConceptScore W2029655008C187736073 @default.
- W2029655008 hasConceptScore W2029655008C22019652 @default.
- W2029655008 hasConceptScore W2029655008C2780451532 @default.
- W2029655008 hasConceptScore W2029655008C31972630 @default.
- W2029655008 hasConceptScore W2029655008C41008148 @default.
- W2029655008 hasConceptScore W2029655008C50644808 @default.
- W2029655008 hasConceptScore W2029655008C61326573 @default.
- W2029655008 hasConceptScore W2029655008C62520636 @default.
- W2029655008 hasConceptScore W2029655008C90509273 @default.
- W2029655008 hasLocation W20296550081 @default.
- W2029655008 hasOpenAccess W2029655008 @default.
- W2029655008 hasPrimaryLocation W20296550081 @default.
- W2029655008 hasRelatedWork W1996541855 @default.
- W2029655008 hasRelatedWork W2985459377 @default.
- W2029655008 hasRelatedWork W2989932438 @default.
- W2029655008 hasRelatedWork W3011996705 @default.
- W2029655008 hasRelatedWork W3099765033 @default.
- W2029655008 hasRelatedWork W3175189414 @default.
- W2029655008 hasRelatedWork W3206592002 @default.
- W2029655008 hasRelatedWork W4210794429 @default.
- W2029655008 hasRelatedWork W4225691219 @default.
- W2029655008 hasRelatedWork W4236636304 @default.
- W2029655008 isParatext "false" @default.
- W2029655008 isRetracted "false" @default.
- W2029655008 magId "2029655008" @default.
- W2029655008 workType "article" @default.