Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029687546> ?p ?o ?g. }
- W2029687546 endingPage "90" @default.
- W2029687546 startingPage "67" @default.
- W2029687546 abstract "Boundary integral equations are an important class of methods for acoustic and electromagnetic scattering from periodic arrays of obstacles. For piecewise homogeneous materials, they discretize the interface alone and can achieve high order accuracy in complicated geometries. They also satisfy the radiation condition for the scattered field, avoiding the need for artificial boundary conditions on a truncated computational domain. By using the quasi-periodic Green’s function, appropriate boundary conditions are automatically satisfied on the boundary of the unit cell. There are two drawbacks to this approach: (i) the quasi-periodic Green’s function diverges for parameter families known as Wood’s anomalies, even though the scattering problem remains well-posed, and (ii) the lattice sum representation of the quasi-periodic Green’s function converges in a disc, becoming unwieldy when obstacles have high aspect ratio. In this paper, we bypass both problems by means of a new integral representation that relies on the free-space Green’s function alone, adding auxiliary layer potentials on the boundary of the unit cell strip while expanding the linear system to enforce quasi-periodicity. Summing nearby images directly leaves auxiliary densities that are smooth, hence easily represented in the Fourier domain using Sommerfeld integrals. Wood’s anomalies are handled analytically by deformation of the Sommerfeld contour. The resulting integral equation is of the second kind and achieves spectral accuracy. Because of our image structure, inclusions which intersect the unit cell walls are handled easily and automatically. We include an implementation and simple code example with a freely-available MATLAB toolbox." @default.
- W2029687546 created "2016-06-24" @default.
- W2029687546 creator A5037306695 @default.
- W2029687546 creator A5074875493 @default.
- W2029687546 date "2010-11-23" @default.
- W2029687546 modified "2023-10-16" @default.
- W2029687546 title "A new integral representation for quasi-periodic scattering problems in two dimensions" @default.
- W2029687546 cites W1500260654 @default.
- W2029687546 cites W1963745537 @default.
- W2029687546 cites W1975285100 @default.
- W2029687546 cites W1976159085 @default.
- W2029687546 cites W1986387313 @default.
- W2029687546 cites W1987484653 @default.
- W2029687546 cites W1987880468 @default.
- W2029687546 cites W2010044810 @default.
- W2029687546 cites W2017871092 @default.
- W2029687546 cites W2018232919 @default.
- W2029687546 cites W2024980572 @default.
- W2029687546 cites W2035956484 @default.
- W2029687546 cites W2039296759 @default.
- W2029687546 cites W2039518636 @default.
- W2029687546 cites W2042127244 @default.
- W2029687546 cites W2047777776 @default.
- W2029687546 cites W2049503952 @default.
- W2029687546 cites W2050824655 @default.
- W2029687546 cites W2061817315 @default.
- W2029687546 cites W2071585412 @default.
- W2029687546 cites W2072319428 @default.
- W2029687546 cites W2074326410 @default.
- W2029687546 cites W2077590721 @default.
- W2029687546 cites W2095249993 @default.
- W2029687546 cites W2118644500 @default.
- W2029687546 cites W2138249740 @default.
- W2029687546 cites W2147963069 @default.
- W2029687546 cites W2151691003 @default.
- W2029687546 cites W2164440677 @default.
- W2029687546 cites W4252125839 @default.
- W2029687546 cites W4253695550 @default.
- W2029687546 cites W4292027041 @default.
- W2029687546 cites W619458845 @default.
- W2029687546 doi "https://doi.org/10.1007/s10543-010-0297-x" @default.
- W2029687546 hasPublicationYear "2010" @default.
- W2029687546 type Work @default.
- W2029687546 sameAs 2029687546 @default.
- W2029687546 citedByCount "62" @default.
- W2029687546 countsByYear W20296875462012 @default.
- W2029687546 countsByYear W20296875462013 @default.
- W2029687546 countsByYear W20296875462014 @default.
- W2029687546 countsByYear W20296875462015 @default.
- W2029687546 countsByYear W20296875462016 @default.
- W2029687546 countsByYear W20296875462017 @default.
- W2029687546 countsByYear W20296875462018 @default.
- W2029687546 countsByYear W20296875462019 @default.
- W2029687546 countsByYear W20296875462020 @default.
- W2029687546 countsByYear W20296875462021 @default.
- W2029687546 countsByYear W20296875462022 @default.
- W2029687546 countsByYear W20296875462023 @default.
- W2029687546 crossrefType "journal-article" @default.
- W2029687546 hasAuthorship W2029687546A5037306695 @default.
- W2029687546 hasAuthorship W2029687546A5074875493 @default.
- W2029687546 hasBestOaLocation W20296875461 @default.
- W2029687546 hasConcept C120665830 @default.
- W2029687546 hasConcept C121332964 @default.
- W2029687546 hasConcept C134306372 @default.
- W2029687546 hasConcept C164660894 @default.
- W2029687546 hasConcept C182310444 @default.
- W2029687546 hasConcept C191486275 @default.
- W2029687546 hasConcept C2524010 @default.
- W2029687546 hasConcept C27016315 @default.
- W2029687546 hasConcept C33923547 @default.
- W2029687546 hasConcept C62354387 @default.
- W2029687546 hasConcept C73000952 @default.
- W2029687546 hasConceptScore W2029687546C120665830 @default.
- W2029687546 hasConceptScore W2029687546C121332964 @default.
- W2029687546 hasConceptScore W2029687546C134306372 @default.
- W2029687546 hasConceptScore W2029687546C164660894 @default.
- W2029687546 hasConceptScore W2029687546C182310444 @default.
- W2029687546 hasConceptScore W2029687546C191486275 @default.
- W2029687546 hasConceptScore W2029687546C2524010 @default.
- W2029687546 hasConceptScore W2029687546C27016315 @default.
- W2029687546 hasConceptScore W2029687546C33923547 @default.
- W2029687546 hasConceptScore W2029687546C62354387 @default.
- W2029687546 hasConceptScore W2029687546C73000952 @default.
- W2029687546 hasIssue "1" @default.
- W2029687546 hasLocation W20296875461 @default.
- W2029687546 hasOpenAccess W2029687546 @default.
- W2029687546 hasPrimaryLocation W20296875461 @default.
- W2029687546 hasRelatedWork W1506284452 @default.
- W2029687546 hasRelatedWork W2046313492 @default.
- W2029687546 hasRelatedWork W2057106870 @default.
- W2029687546 hasRelatedWork W2101350587 @default.
- W2029687546 hasRelatedWork W2316831214 @default.
- W2029687546 hasRelatedWork W2594614225 @default.
- W2029687546 hasRelatedWork W2766351804 @default.
- W2029687546 hasRelatedWork W2804997972 @default.
- W2029687546 hasRelatedWork W2929871239 @default.
- W2029687546 hasRelatedWork W3104090663 @default.
- W2029687546 hasVolume "51" @default.