Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029689911> ?p ?o ?g. }
- W2029689911 endingPage "74" @default.
- W2029689911 startingPage "67" @default.
- W2029689911 abstract "This paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first proved under mild conditions. By constructing a new Lyapnuov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition." @default.
- W2029689911 created "2016-06-24" @default.
- W2029689911 creator A5024369927 @default.
- W2029689911 creator A5035358476 @default.
- W2029689911 creator A5048831651 @default.
- W2029689911 date "2009-01-01" @default.
- W2029689911 modified "2023-09-29" @default.
- W2029689911 title "Asymptotic stability for neural networks with mixed time-delays: The discrete-time case" @default.
- W2029689911 cites W1996418492 @default.
- W2029689911 cites W2028392152 @default.
- W2029689911 cites W2033963609 @default.
- W2029689911 cites W2034779834 @default.
- W2029689911 cites W2040162808 @default.
- W2029689911 cites W2042423093 @default.
- W2029689911 cites W2049648204 @default.
- W2029689911 cites W2066931881 @default.
- W2029689911 cites W2072065165 @default.
- W2029689911 cites W2074317697 @default.
- W2029689911 cites W2075715513 @default.
- W2029689911 cites W2079730668 @default.
- W2029689911 cites W2094015182 @default.
- W2029689911 cites W2104903001 @default.
- W2029689911 cites W2107084183 @default.
- W2029689911 cites W2110975419 @default.
- W2029689911 cites W2123539377 @default.
- W2029689911 cites W2125114722 @default.
- W2029689911 cites W2127521721 @default.
- W2029689911 cites W2129721886 @default.
- W2029689911 cites W2143348717 @default.
- W2029689911 cites W2157138121 @default.
- W2029689911 cites W2167462730 @default.
- W2029689911 cites W2172254217 @default.
- W2029689911 cites W3146921954 @default.
- W2029689911 doi "https://doi.org/10.1016/j.neunet.2008.10.001" @default.
- W2029689911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19028076" @default.
- W2029689911 hasPublicationYear "2009" @default.
- W2029689911 type Work @default.
- W2029689911 sameAs 2029689911 @default.
- W2029689911 citedByCount "139" @default.
- W2029689911 countsByYear W20296899112012 @default.
- W2029689911 countsByYear W20296899112013 @default.
- W2029689911 countsByYear W20296899112014 @default.
- W2029689911 countsByYear W20296899112015 @default.
- W2029689911 countsByYear W20296899112016 @default.
- W2029689911 countsByYear W20296899112017 @default.
- W2029689911 countsByYear W20296899112018 @default.
- W2029689911 countsByYear W20296899112019 @default.
- W2029689911 countsByYear W20296899112020 @default.
- W2029689911 countsByYear W20296899112021 @default.
- W2029689911 countsByYear W20296899112022 @default.
- W2029689911 countsByYear W20296899112023 @default.
- W2029689911 crossrefType "journal-article" @default.
- W2029689911 hasAuthorship W2029689911A5024369927 @default.
- W2029689911 hasAuthorship W2029689911A5035358476 @default.
- W2029689911 hasAuthorship W2029689911A5048831651 @default.
- W2029689911 hasBestOaLocation W20296899112 @default.
- W2029689911 hasConcept C105795698 @default.
- W2029689911 hasConcept C111919701 @default.
- W2029689911 hasConcept C112972136 @default.
- W2029689911 hasConcept C11413529 @default.
- W2029689911 hasConcept C119857082 @default.
- W2029689911 hasConcept C121332964 @default.
- W2029689911 hasConcept C126255220 @default.
- W2029689911 hasConcept C134306372 @default.
- W2029689911 hasConcept C143170015 @default.
- W2029689911 hasConcept C147168706 @default.
- W2029689911 hasConcept C154945302 @default.
- W2029689911 hasConcept C158622935 @default.
- W2029689911 hasConcept C167964875 @default.
- W2029689911 hasConcept C201829737 @default.
- W2029689911 hasConcept C202615002 @default.
- W2029689911 hasConcept C2775924081 @default.
- W2029689911 hasConcept C2777212361 @default.
- W2029689911 hasConcept C2780365114 @default.
- W2029689911 hasConcept C28826006 @default.
- W2029689911 hasConcept C33923547 @default.
- W2029689911 hasConcept C41008148 @default.
- W2029689911 hasConcept C41949839 @default.
- W2029689911 hasConcept C47446073 @default.
- W2029689911 hasConcept C48103436 @default.
- W2029689911 hasConcept C50644808 @default.
- W2029689911 hasConcept C55689738 @default.
- W2029689911 hasConcept C62520636 @default.
- W2029689911 hasConcept C72169020 @default.
- W2029689911 hasConcept C78045399 @default.
- W2029689911 hasConcept C86582703 @default.
- W2029689911 hasConcept C94766913 @default.
- W2029689911 hasConceptScore W2029689911C105795698 @default.
- W2029689911 hasConceptScore W2029689911C111919701 @default.
- W2029689911 hasConceptScore W2029689911C112972136 @default.
- W2029689911 hasConceptScore W2029689911C11413529 @default.
- W2029689911 hasConceptScore W2029689911C119857082 @default.
- W2029689911 hasConceptScore W2029689911C121332964 @default.
- W2029689911 hasConceptScore W2029689911C126255220 @default.
- W2029689911 hasConceptScore W2029689911C134306372 @default.
- W2029689911 hasConceptScore W2029689911C143170015 @default.
- W2029689911 hasConceptScore W2029689911C147168706 @default.
- W2029689911 hasConceptScore W2029689911C154945302 @default.