Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029697302> ?p ?o ?g. }
- W2029697302 endingPage "744" @default.
- W2029697302 startingPage "738" @default.
- W2029697302 abstract "Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2,500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respectively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demonstrates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level." @default.
- W2029697302 created "2016-06-24" @default.
- W2029697302 creator A5011198695 @default.
- W2029697302 creator A5011577651 @default.
- W2029697302 creator A5028017919 @default.
- W2029697302 creator A5060576851 @default.
- W2029697302 creator A5077623391 @default.
- W2029697302 creator A5091656435 @default.
- W2029697302 date "2007-09-01" @default.
- W2029697302 modified "2023-10-14" @default.
- W2029697302 title "Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression" @default.
- W2029697302 cites W173511263 @default.
- W2029697302 cites W1971798222 @default.
- W2029697302 cites W1972807561 @default.
- W2029697302 cites W1988233512 @default.
- W2029697302 cites W2020205401 @default.
- W2029697302 cites W2030106896 @default.
- W2029697302 cites W2040026378 @default.
- W2029697302 cites W2041004141 @default.
- W2029697302 cites W2046404820 @default.
- W2029697302 cites W2077286517 @default.
- W2029697302 cites W2078840559 @default.
- W2029697302 cites W2085880802 @default.
- W2029697302 cites W2086598913 @default.
- W2029697302 cites W2091009600 @default.
- W2029697302 cites W2099838915 @default.
- W2029697302 cites W2106403967 @default.
- W2029697302 cites W2117466142 @default.
- W2029697302 cites W2127002222 @default.
- W2029697302 cites W2127847749 @default.
- W2029697302 cites W2129716215 @default.
- W2029697302 cites W2139925058 @default.
- W2029697302 cites W2157547985 @default.
- W2029697302 cites W2169808741 @default.
- W2029697302 cites W2248139498 @default.
- W2029697302 cites W2320435856 @default.
- W2029697302 doi "https://doi.org/10.1631/jzus.2007.b0738" @default.
- W2029697302 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1997228" @default.
- W2029697302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17910117" @default.
- W2029697302 hasPublicationYear "2007" @default.
- W2029697302 type Work @default.
- W2029697302 sameAs 2029697302 @default.
- W2029697302 citedByCount "75" @default.
- W2029697302 countsByYear W20296973022012 @default.
- W2029697302 countsByYear W20296973022013 @default.
- W2029697302 countsByYear W20296973022014 @default.
- W2029697302 countsByYear W20296973022015 @default.
- W2029697302 countsByYear W20296973022016 @default.
- W2029697302 countsByYear W20296973022017 @default.
- W2029697302 countsByYear W20296973022018 @default.
- W2029697302 countsByYear W20296973022019 @default.
- W2029697302 countsByYear W20296973022020 @default.
- W2029697302 countsByYear W20296973022021 @default.
- W2029697302 countsByYear W20296973022022 @default.
- W2029697302 countsByYear W20296973022023 @default.
- W2029697302 crossrefType "journal-article" @default.
- W2029697302 hasAuthorship W2029697302A5011198695 @default.
- W2029697302 hasAuthorship W2029697302A5011577651 @default.
- W2029697302 hasAuthorship W2029697302A5028017919 @default.
- W2029697302 hasAuthorship W2029697302A5060576851 @default.
- W2029697302 hasAuthorship W2029697302A5077623391 @default.
- W2029697302 hasAuthorship W2029697302A5091656435 @default.
- W2029697302 hasBestOaLocation W20296973022 @default.
- W2029697302 hasConcept C105795698 @default.
- W2029697302 hasConcept C152877465 @default.
- W2029697302 hasConcept C159078339 @default.
- W2029697302 hasConcept C170964787 @default.
- W2029697302 hasConcept C205649164 @default.
- W2029697302 hasConcept C22354355 @default.
- W2029697302 hasConcept C27438332 @default.
- W2029697302 hasConcept C33923547 @default.
- W2029697302 hasConcept C48921125 @default.
- W2029697302 hasConcept C62649853 @default.
- W2029697302 hasConcept C74887250 @default.
- W2029697302 hasConcept C83546350 @default.
- W2029697302 hasConceptScore W2029697302C105795698 @default.
- W2029697302 hasConceptScore W2029697302C152877465 @default.
- W2029697302 hasConceptScore W2029697302C159078339 @default.
- W2029697302 hasConceptScore W2029697302C170964787 @default.
- W2029697302 hasConceptScore W2029697302C205649164 @default.
- W2029697302 hasConceptScore W2029697302C22354355 @default.
- W2029697302 hasConceptScore W2029697302C27438332 @default.
- W2029697302 hasConceptScore W2029697302C33923547 @default.
- W2029697302 hasConceptScore W2029697302C48921125 @default.
- W2029697302 hasConceptScore W2029697302C62649853 @default.
- W2029697302 hasConceptScore W2029697302C74887250 @default.
- W2029697302 hasConceptScore W2029697302C83546350 @default.
- W2029697302 hasIssue "10" @default.
- W2029697302 hasLocation W20296973021 @default.
- W2029697302 hasLocation W20296973022 @default.
- W2029697302 hasLocation W20296973023 @default.
- W2029697302 hasLocation W20296973024 @default.
- W2029697302 hasOpenAccess W2029697302 @default.
- W2029697302 hasPrimaryLocation W20296973021 @default.
- W2029697302 hasRelatedWork W2260640507 @default.
- W2029697302 hasRelatedWork W2316278322 @default.
- W2029697302 hasRelatedWork W2347788329 @default.
- W2029697302 hasRelatedWork W2352110211 @default.