Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029702595> ?p ?o ?g. }
- W2029702595 endingPage "148" @default.
- W2029702595 startingPage "134" @default.
- W2029702595 abstract "A classical requirement in the design of communication networks is that all entities must be connected. In a network where links may fail, the connectedness probability is called all-terminal reliability. The model is suitable for FTTH services, where link failures are unpredictable. In real scenarios, terminals must be connected by a limited number of hops. Therefore, we study the Diameter-Constrained Reliability (DCR). We are given a simple graph G=(V,E), a subset K⊆V of terminals, a diameter d and independent failure probabilities q=1−p for each link. The goal is to find the probability RK,Gd that all terminals remain connected by paths composed by d hops or less. The general DCR computation is NP-Hard, and the target probability is a polynomial in p. In this paper we study the DCR metric. It connects reliability with quality, and should be considered in the design of the physical layer in FTTH services together with connectivity requirements. We include a full discussion of the computational complexity of the DCR as a function of the number of terminals k=|K| and diameter d. Then, we find efficient DCR computation for Monma graphs, an outstanding family of topologies from robust network design. The computation suggests corollaries that enrich the subset of instances that accept efficient DCR computation. Inspired in its NP-Hardness, we introduce two approximation algorithms in order to find the DCR in general. The first one estimates the target polynomial counting special subgraphs. The second finds pointwise estimations of the polynomial using conditioned-Monte Carlo, and applies Newton׳s interpolation followed by a rounding stage of the coefficients. The performance of both methods is discussed on the lights of Complete, Harary and Monma graphs. In order to study scalability, we analytically find the diameter-constrained reliability of a series–parallel graph with 44 nodes and 72 links. The results suggest that our counting implementation outperforms the interpolation technique, and is scalable as well. Open problems and trends for future work are included in the conclusions." @default.
- W2029702595 created "2016-06-24" @default.
- W2029702595 creator A5007780223 @default.
- W2029702595 creator A5011807949 @default.
- W2029702595 creator A5056779203 @default.
- W2029702595 creator A5085419342 @default.
- W2029702595 date "2014-08-01" @default.
- W2029702595 modified "2023-09-26" @default.
- W2029702595 title "Monte Carlo methods in diameter-constrained reliability" @default.
- W2029702595 cites W1551570727 @default.
- W2029702595 cites W1969137042 @default.
- W2029702595 cites W1972110657 @default.
- W2029702595 cites W1991536882 @default.
- W2029702595 cites W1998076865 @default.
- W2029702595 cites W2004950051 @default.
- W2029702595 cites W2005335447 @default.
- W2029702595 cites W2024264591 @default.
- W2029702595 cites W2027868217 @default.
- W2029702595 cites W2036265926 @default.
- W2029702595 cites W2049029066 @default.
- W2029702595 cites W2052905766 @default.
- W2029702595 cites W2069741057 @default.
- W2029702595 cites W2079195483 @default.
- W2029702595 cites W2089213868 @default.
- W2029702595 cites W2115826669 @default.
- W2029702595 cites W2131163906 @default.
- W2029702595 cites W2133537273 @default.
- W2029702595 cites W2146883641 @default.
- W2029702595 cites W2150331677 @default.
- W2029702595 cites W2155182912 @default.
- W2029702595 cites W2167303612 @default.
- W2029702595 cites W4238426377 @default.
- W2029702595 doi "https://doi.org/10.1016/j.osn.2014.06.003" @default.
- W2029702595 hasPublicationYear "2014" @default.
- W2029702595 type Work @default.
- W2029702595 sameAs 2029702595 @default.
- W2029702595 citedByCount "18" @default.
- W2029702595 countsByYear W20297025952014 @default.
- W2029702595 countsByYear W20297025952015 @default.
- W2029702595 countsByYear W20297025952016 @default.
- W2029702595 countsByYear W20297025952017 @default.
- W2029702595 countsByYear W20297025952019 @default.
- W2029702595 countsByYear W20297025952020 @default.
- W2029702595 countsByYear W20297025952021 @default.
- W2029702595 crossrefType "journal-article" @default.
- W2029702595 hasAuthorship W2029702595A5007780223 @default.
- W2029702595 hasAuthorship W2029702595A5011807949 @default.
- W2029702595 hasAuthorship W2029702595A5056779203 @default.
- W2029702595 hasAuthorship W2029702595A5085419342 @default.
- W2029702595 hasConcept C105795698 @default.
- W2029702595 hasConcept C11413529 @default.
- W2029702595 hasConcept C114614502 @default.
- W2029702595 hasConcept C118615104 @default.
- W2029702595 hasConcept C121332964 @default.
- W2029702595 hasConcept C126255220 @default.
- W2029702595 hasConcept C132525143 @default.
- W2029702595 hasConcept C134306372 @default.
- W2029702595 hasConcept C15744967 @default.
- W2029702595 hasConcept C163258240 @default.
- W2029702595 hasConcept C179799912 @default.
- W2029702595 hasConcept C184720557 @default.
- W2029702595 hasConcept C19499675 @default.
- W2029702595 hasConcept C199845137 @default.
- W2029702595 hasConcept C201943243 @default.
- W2029702595 hasConcept C2777984123 @default.
- W2029702595 hasConcept C31258907 @default.
- W2029702595 hasConcept C33923547 @default.
- W2029702595 hasConcept C41008148 @default.
- W2029702595 hasConcept C43214815 @default.
- W2029702595 hasConcept C45374587 @default.
- W2029702595 hasConcept C542102704 @default.
- W2029702595 hasConcept C62520636 @default.
- W2029702595 hasConcept C80444323 @default.
- W2029702595 hasConcept C90119067 @default.
- W2029702595 hasConceptScore W2029702595C105795698 @default.
- W2029702595 hasConceptScore W2029702595C11413529 @default.
- W2029702595 hasConceptScore W2029702595C114614502 @default.
- W2029702595 hasConceptScore W2029702595C118615104 @default.
- W2029702595 hasConceptScore W2029702595C121332964 @default.
- W2029702595 hasConceptScore W2029702595C126255220 @default.
- W2029702595 hasConceptScore W2029702595C132525143 @default.
- W2029702595 hasConceptScore W2029702595C134306372 @default.
- W2029702595 hasConceptScore W2029702595C15744967 @default.
- W2029702595 hasConceptScore W2029702595C163258240 @default.
- W2029702595 hasConceptScore W2029702595C179799912 @default.
- W2029702595 hasConceptScore W2029702595C184720557 @default.
- W2029702595 hasConceptScore W2029702595C19499675 @default.
- W2029702595 hasConceptScore W2029702595C199845137 @default.
- W2029702595 hasConceptScore W2029702595C201943243 @default.
- W2029702595 hasConceptScore W2029702595C2777984123 @default.
- W2029702595 hasConceptScore W2029702595C31258907 @default.
- W2029702595 hasConceptScore W2029702595C33923547 @default.
- W2029702595 hasConceptScore W2029702595C41008148 @default.
- W2029702595 hasConceptScore W2029702595C43214815 @default.
- W2029702595 hasConceptScore W2029702595C45374587 @default.
- W2029702595 hasConceptScore W2029702595C542102704 @default.
- W2029702595 hasConceptScore W2029702595C62520636 @default.
- W2029702595 hasConceptScore W2029702595C80444323 @default.