Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029747712> ?p ?o ?g. }
- W2029747712 endingPage "85" @default.
- W2029747712 startingPage "70" @default.
- W2029747712 abstract "Current climatic conditions and the occurrence of discontinuous and sporadic permafrost in the Alps result in a low turnover rate and therefore accumulation of organic matter (OM) in soils. Alpine soils are thus highly sensitive to global warming that potentially promotes the mineralisation of soil organic matter (SOM). This process might increase the release of CO2 to the atmosphere. Our aim was to investigate the potential effect of permafrost thawing by the analysis of the physical–chemical soil properties of permafrost versus non-permafrost sites. Specifically, we i) quantified the SOM stocks at such sites, ii) characterised SOM and its physical and chemical fractions and iii) estimated the age range of the bulk soil and stable C-fraction (radiocarbon dating). In south-eastern Switzerland, two areas above the timberline and one below the timberline (where isolated permafrost was verified) were investigated in detail. At each site, the experimental set-up consisted in the comparison of nearby soils that were either influenced or not by permafrost. The C-stocks (down to the C horizon or rock surface) did not show a significant difference between permafrost and non-permafrost soils and were in the same range of 10–15 kg/m2 in alpine (grassland) and subalpine (forest) sites. Above the timberline, the bulk SOM showed a distinct higher age at permafrost sites compared to non-permafrost sites. This higher age was even more evident in the stable C-fraction (resistant to an H2O2 treatment), where ages of up to 11 ky in permafrost soils were recorded. The highest age obtained in the stable C-fraction in non-permafrost soils was around 4 ky. Consequently, climatic conditions and the occurrence of discontinuous permafrost resulted in a very low turnover rate of SOM. At the subalpine site, the difference between permafrost and non-permafrost sites was less. At both sites (alpine and subalpine), DRIFT (Diffuse Reflection Infrared Fourier Transform) was used to determine the functional groups in the bulk soil and in the stable C-fraction. In general, the stable C-fraction had a different composition compared to the bulk SOM at non-permafrost sites; this was mostly not the case at the permafrost sites. This confirms that different decomposition processes occur between permafrost and non-permafrost sites. Furthermore, permafrost sites accumulated more the low-density physical fractions of SOM that are potentially easily degradable. The obtained results suggest that a warmer climate may not necessarily lead to an increased CO2 release from SOM-degradation in permafrost soils compared to non-permafrost soils. High-alpine soils and OM furthermore integrate a multi-facetted response to the past and ongoing surrounding conditions. The melting of permafrost will most likely enhance vegetation growth, which to a certain degree will probably compensate for carbon losses on the long-term." @default.
- W2029747712 created "2016-06-24" @default.
- W2029747712 creator A5011035686 @default.
- W2029747712 creator A5013236556 @default.
- W2029747712 creator A5013367453 @default.
- W2029747712 creator A5016231185 @default.
- W2029747712 creator A5023949681 @default.
- W2029747712 creator A5023967922 @default.
- W2029747712 creator A5081410568 @default.
- W2029747712 creator A5086709204 @default.
- W2029747712 creator A5091086517 @default.
- W2029747712 date "2013-11-01" @default.
- W2029747712 modified "2023-10-10" @default.
- W2029747712 title "Effect of permafrost on the formation of soil organic carbon pools and their physical–chemical properties in the Eastern Swiss Alps" @default.
- W2029747712 cites W1496360119 @default.
- W2029747712 cites W1564278553 @default.
- W2029747712 cites W1575688672 @default.
- W2029747712 cites W1622943881 @default.
- W2029747712 cites W1956280464 @default.
- W2029747712 cites W1965091869 @default.
- W2029747712 cites W1982141071 @default.
- W2029747712 cites W1984866801 @default.
- W2029747712 cites W1985450515 @default.
- W2029747712 cites W1985672187 @default.
- W2029747712 cites W1986000195 @default.
- W2029747712 cites W1995505826 @default.
- W2029747712 cites W1997008943 @default.
- W2029747712 cites W2000901818 @default.
- W2029747712 cites W2003224211 @default.
- W2029747712 cites W2008599200 @default.
- W2029747712 cites W2008962657 @default.
- W2029747712 cites W2016153611 @default.
- W2029747712 cites W2018959166 @default.
- W2029747712 cites W2021182782 @default.
- W2029747712 cites W2022531869 @default.
- W2029747712 cites W2022935059 @default.
- W2029747712 cites W2024340952 @default.
- W2029747712 cites W2024779526 @default.
- W2029747712 cites W2027176657 @default.
- W2029747712 cites W2031936132 @default.
- W2029747712 cites W2046047329 @default.
- W2029747712 cites W2053549162 @default.
- W2029747712 cites W2069075208 @default.
- W2029747712 cites W2070358034 @default.
- W2029747712 cites W2084022175 @default.
- W2029747712 cites W2088292808 @default.
- W2029747712 cites W2089732239 @default.
- W2029747712 cites W2095560096 @default.
- W2029747712 cites W2102909189 @default.
- W2029747712 cites W2103926610 @default.
- W2029747712 cites W2104573843 @default.
- W2029747712 cites W2108744281 @default.
- W2029747712 cites W2111172340 @default.
- W2029747712 cites W2114470305 @default.
- W2029747712 cites W2120061326 @default.
- W2029747712 cites W2127170577 @default.
- W2029747712 cites W2132484323 @default.
- W2029747712 cites W2136429866 @default.
- W2029747712 cites W2139449145 @default.
- W2029747712 cites W2142935748 @default.
- W2029747712 cites W2147716564 @default.
- W2029747712 cites W2149854775 @default.
- W2029747712 cites W2159200641 @default.
- W2029747712 cites W2162256264 @default.
- W2029747712 cites W2163462941 @default.
- W2029747712 cites W2163963067 @default.
- W2029747712 cites W2165101359 @default.
- W2029747712 cites W2167452694 @default.
- W2029747712 cites W2526908225 @default.
- W2029747712 cites W2614293155 @default.
- W2029747712 cites W4211135859 @default.
- W2029747712 doi "https://doi.org/10.1016/j.catena.2013.06.010" @default.
- W2029747712 hasPublicationYear "2013" @default.
- W2029747712 type Work @default.
- W2029747712 sameAs 2029747712 @default.
- W2029747712 citedByCount "32" @default.
- W2029747712 countsByYear W20297477122014 @default.
- W2029747712 countsByYear W20297477122015 @default.
- W2029747712 countsByYear W20297477122016 @default.
- W2029747712 countsByYear W20297477122017 @default.
- W2029747712 countsByYear W20297477122018 @default.
- W2029747712 countsByYear W20297477122019 @default.
- W2029747712 countsByYear W20297477122020 @default.
- W2029747712 countsByYear W20297477122021 @default.
- W2029747712 countsByYear W20297477122022 @default.
- W2029747712 countsByYear W20297477122023 @default.
- W2029747712 crossrefType "journal-article" @default.
- W2029747712 hasAuthorship W2029747712A5011035686 @default.
- W2029747712 hasAuthorship W2029747712A5013236556 @default.
- W2029747712 hasAuthorship W2029747712A5013367453 @default.
- W2029747712 hasAuthorship W2029747712A5016231185 @default.
- W2029747712 hasAuthorship W2029747712A5023949681 @default.
- W2029747712 hasAuthorship W2029747712A5023967922 @default.
- W2029747712 hasAuthorship W2029747712A5081410568 @default.
- W2029747712 hasAuthorship W2029747712A5086709204 @default.
- W2029747712 hasAuthorship W2029747712A5091086517 @default.
- W2029747712 hasBestOaLocation W20297477122 @default.
- W2029747712 hasConcept C100970517 @default.