Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029836237> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2029836237 endingPage "366" @default.
- W2029836237 startingPage "348" @default.
- W2029836237 abstract "Two-dimensional (2D) adaptive filtering is a technique that can be applied to many images, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to 2D structures and the novel 2D adaptive filters are established. Based on this extension, the 2D selective partial update NLMS (2D-SPU-NLMS), the 2D selective partial update APA (2D-SPU-APA) and the 2D selective regressor APA (2D-SR-APA) are presented. In 2D-SPU adaptive algorithms, the filter coefficients are partially updated, and in 2D-SR-APA, the recent regressors of input signal are optimally selected in each time iteration. These algorithms reduce the computational complexity in 2D adaptive filter applications. In the following, a unified approach for the establishment and mean-square performance analysis of the family of 2D adaptive filter algorithms is presented. This analysis is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. We demonstrate the good performance of the proposed algorithms through several simulation results in 2D system identification and 2D adaptive noise cancellation (2D-ANC) for image restoration. The results are compared with the classical 2D adaptive filters such as 2D-LMS, 2D-NLMS, and 2D-APA. Also we show that the derived theoretical expressions are useful in predicting the steady-state and transient performance of 2D adaptive filter algorithms." @default.
- W2029836237 created "2016-06-24" @default.
- W2029836237 creator A5031161382 @default.
- W2029836237 creator A5084772179 @default.
- W2029836237 date "2014-10-01" @default.
- W2029836237 modified "2023-09-23" @default.
- W2029836237 title "The novel two-dimensional adaptive filter algorithms with the performance analysis" @default.
- W2029836237 cites W1492221128 @default.
- W2029836237 cites W1518912719 @default.
- W2029836237 cites W1572520507 @default.
- W2029836237 cites W1602659231 @default.
- W2029836237 cites W1969322020 @default.
- W2029836237 cites W1983427068 @default.
- W2029836237 cites W2004901922 @default.
- W2029836237 cites W2007253321 @default.
- W2029836237 cites W2021843092 @default.
- W2029836237 cites W2055659772 @default.
- W2029836237 cites W2101953797 @default.
- W2029836237 cites W2106517049 @default.
- W2029836237 cites W2110048802 @default.
- W2029836237 cites W2123284558 @default.
- W2029836237 cites W2129500293 @default.
- W2029836237 cites W2136541117 @default.
- W2029836237 cites W2156239240 @default.
- W2029836237 cites W2156729252 @default.
- W2029836237 cites W2164852895 @default.
- W2029836237 cites W3198160809 @default.
- W2029836237 cites W4924687 @default.
- W2029836237 cites W2026055766 @default.
- W2029836237 doi "https://doi.org/10.1016/j.sigpro.2013.12.016" @default.
- W2029836237 hasPublicationYear "2014" @default.
- W2029836237 type Work @default.
- W2029836237 sameAs 2029836237 @default.
- W2029836237 citedByCount "4" @default.
- W2029836237 countsByYear W20298362372014 @default.
- W2029836237 countsByYear W20298362372015 @default.
- W2029836237 countsByYear W20298362372017 @default.
- W2029836237 countsByYear W20298362372018 @default.
- W2029836237 crossrefType "journal-article" @default.
- W2029836237 hasAuthorship W2029836237A5031161382 @default.
- W2029836237 hasAuthorship W2029836237A5084772179 @default.
- W2029836237 hasConcept C102248274 @default.
- W2029836237 hasConcept C104267543 @default.
- W2029836237 hasConcept C106131492 @default.
- W2029836237 hasConcept C11413529 @default.
- W2029836237 hasConcept C121332964 @default.
- W2029836237 hasConcept C13107197 @default.
- W2029836237 hasConcept C163716315 @default.
- W2029836237 hasConcept C179799912 @default.
- W2029836237 hasConcept C22597639 @default.
- W2029836237 hasConcept C31972630 @default.
- W2029836237 hasConcept C32617633 @default.
- W2029836237 hasConcept C41008148 @default.
- W2029836237 hasConcept C62520636 @default.
- W2029836237 hasConcept C84462506 @default.
- W2029836237 hasConcept C9390403 @default.
- W2029836237 hasConceptScore W2029836237C102248274 @default.
- W2029836237 hasConceptScore W2029836237C104267543 @default.
- W2029836237 hasConceptScore W2029836237C106131492 @default.
- W2029836237 hasConceptScore W2029836237C11413529 @default.
- W2029836237 hasConceptScore W2029836237C121332964 @default.
- W2029836237 hasConceptScore W2029836237C13107197 @default.
- W2029836237 hasConceptScore W2029836237C163716315 @default.
- W2029836237 hasConceptScore W2029836237C179799912 @default.
- W2029836237 hasConceptScore W2029836237C22597639 @default.
- W2029836237 hasConceptScore W2029836237C31972630 @default.
- W2029836237 hasConceptScore W2029836237C32617633 @default.
- W2029836237 hasConceptScore W2029836237C41008148 @default.
- W2029836237 hasConceptScore W2029836237C62520636 @default.
- W2029836237 hasConceptScore W2029836237C84462506 @default.
- W2029836237 hasConceptScore W2029836237C9390403 @default.
- W2029836237 hasLocation W20298362371 @default.
- W2029836237 hasOpenAccess W2029836237 @default.
- W2029836237 hasPrimaryLocation W20298362371 @default.
- W2029836237 hasRelatedWork W1484281368 @default.
- W2029836237 hasRelatedWork W2053408600 @default.
- W2029836237 hasRelatedWork W2122087661 @default.
- W2029836237 hasRelatedWork W2125520448 @default.
- W2029836237 hasRelatedWork W2125753044 @default.
- W2029836237 hasRelatedWork W2131903831 @default.
- W2029836237 hasRelatedWork W2156729252 @default.
- W2029836237 hasRelatedWork W2215572990 @default.
- W2029836237 hasRelatedWork W2320108554 @default.
- W2029836237 hasRelatedWork W2353537584 @default.
- W2029836237 hasVolume "103" @default.
- W2029836237 isParatext "false" @default.
- W2029836237 isRetracted "false" @default.
- W2029836237 magId "2029836237" @default.
- W2029836237 workType "article" @default.