Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029897006> ?p ?o ?g. }
- W2029897006 endingPage "55" @default.
- W2029897006 startingPage "41" @default.
- W2029897006 abstract "Ensemble methods for classification and regression have focused a great deal of attention in recent years. They have shown, both theoretically and empirically, that they are able to perform substantially better than single models in a wide range of tasks. We have adapted an ensemble method to the problem of predicting future values of time series using recurrent neural networks (RNNs) as base learners. The improvement is made by combining a large number of RNNs, each of which is generated by training on a different set of examples. This algorithm is based on the boosting algorithm where difficult points of the time series are concentrated on during the learning process however, unlike the original algorithm, we introduce a new parameter for tuning the boosting influence on available examples. We test our boosting algorithm for RNNs on single-step-ahead and multi-step-ahead prediction problems. The results are then compared to other regression methods, including those of different local approaches. The overall results obtained through our ensemble method are more accurate than those obtained through the standard method, backpropagation through time, on these datasets and perform significantly better even when long-range dependencies play an important role." @default.
- W2029897006 created "2016-06-24" @default.
- W2029897006 creator A5019399008 @default.
- W2029897006 creator A5021033184 @default.
- W2029897006 creator A5081356371 @default.
- W2029897006 date "2008-01-01" @default.
- W2029897006 modified "2023-10-17" @default.
- W2029897006 title "A new boosting algorithm for improved time-series forecasting with recurrent neural networks" @default.
- W2029897006 cites W1480376833 @default.
- W2029897006 cites W1506467492 @default.
- W2029897006 cites W1560739766 @default.
- W2029897006 cites W1563548348 @default.
- W2029897006 cites W1980418485 @default.
- W2029897006 cites W1988790447 @default.
- W2029897006 cites W2016589492 @default.
- W2029897006 cites W2025697248 @default.
- W2029897006 cites W2050527683 @default.
- W2029897006 cites W2060106113 @default.
- W2029897006 cites W2083186188 @default.
- W2029897006 cites W2088883866 @default.
- W2029897006 cites W2091054786 @default.
- W2029897006 cites W2102635541 @default.
- W2029897006 cites W2109565492 @default.
- W2029897006 cites W2118706537 @default.
- W2029897006 cites W2118821355 @default.
- W2029897006 cites W2124193432 @default.
- W2029897006 cites W2126456774 @default.
- W2029897006 cites W2135691157 @default.
- W2029897006 cites W2138822572 @default.
- W2029897006 cites W2158038039 @default.
- W2029897006 cites W2159164703 @default.
- W2029897006 cites W2159624360 @default.
- W2029897006 cites W2166322089 @default.
- W2029897006 cites W2170852120 @default.
- W2029897006 cites W28412257 @default.
- W2029897006 cites W3004732066 @default.
- W2029897006 cites W4212883601 @default.
- W2029897006 cites W4240294902 @default.
- W2029897006 cites W4244475803 @default.
- W2029897006 cites W4247843916 @default.
- W2029897006 cites W4256364787 @default.
- W2029897006 cites W4300663241 @default.
- W2029897006 doi "https://doi.org/10.1016/j.inffus.2006.10.009" @default.
- W2029897006 hasPublicationYear "2008" @default.
- W2029897006 type Work @default.
- W2029897006 sameAs 2029897006 @default.
- W2029897006 citedByCount "121" @default.
- W2029897006 countsByYear W20298970062012 @default.
- W2029897006 countsByYear W20298970062013 @default.
- W2029897006 countsByYear W20298970062014 @default.
- W2029897006 countsByYear W20298970062015 @default.
- W2029897006 countsByYear W20298970062016 @default.
- W2029897006 countsByYear W20298970062017 @default.
- W2029897006 countsByYear W20298970062018 @default.
- W2029897006 countsByYear W20298970062019 @default.
- W2029897006 countsByYear W20298970062020 @default.
- W2029897006 countsByYear W20298970062021 @default.
- W2029897006 countsByYear W20298970062022 @default.
- W2029897006 countsByYear W20298970062023 @default.
- W2029897006 crossrefType "journal-article" @default.
- W2029897006 hasAuthorship W2029897006A5019399008 @default.
- W2029897006 hasAuthorship W2029897006A5021033184 @default.
- W2029897006 hasAuthorship W2029897006A5081356371 @default.
- W2029897006 hasConcept C105795698 @default.
- W2029897006 hasConcept C11413529 @default.
- W2029897006 hasConcept C119857082 @default.
- W2029897006 hasConcept C143724316 @default.
- W2029897006 hasConcept C147168706 @default.
- W2029897006 hasConcept C151406439 @default.
- W2029897006 hasConcept C151730666 @default.
- W2029897006 hasConcept C154945302 @default.
- W2029897006 hasConcept C155032097 @default.
- W2029897006 hasConcept C33923547 @default.
- W2029897006 hasConcept C41008148 @default.
- W2029897006 hasConcept C45942800 @default.
- W2029897006 hasConcept C46686674 @default.
- W2029897006 hasConcept C50644808 @default.
- W2029897006 hasConcept C83546350 @default.
- W2029897006 hasConcept C86803240 @default.
- W2029897006 hasConceptScore W2029897006C105795698 @default.
- W2029897006 hasConceptScore W2029897006C11413529 @default.
- W2029897006 hasConceptScore W2029897006C119857082 @default.
- W2029897006 hasConceptScore W2029897006C143724316 @default.
- W2029897006 hasConceptScore W2029897006C147168706 @default.
- W2029897006 hasConceptScore W2029897006C151406439 @default.
- W2029897006 hasConceptScore W2029897006C151730666 @default.
- W2029897006 hasConceptScore W2029897006C154945302 @default.
- W2029897006 hasConceptScore W2029897006C155032097 @default.
- W2029897006 hasConceptScore W2029897006C33923547 @default.
- W2029897006 hasConceptScore W2029897006C41008148 @default.
- W2029897006 hasConceptScore W2029897006C45942800 @default.
- W2029897006 hasConceptScore W2029897006C46686674 @default.
- W2029897006 hasConceptScore W2029897006C50644808 @default.
- W2029897006 hasConceptScore W2029897006C83546350 @default.
- W2029897006 hasConceptScore W2029897006C86803240 @default.
- W2029897006 hasIssue "1" @default.
- W2029897006 hasLocation W20298970061 @default.
- W2029897006 hasLocation W20298970062 @default.