Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029967554> ?p ?o ?g. }
- W2029967554 endingPage "2411" @default.
- W2029967554 startingPage "2397" @default.
- W2029967554 abstract "Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data." @default.
- W2029967554 created "2016-06-24" @default.
- W2029967554 creator A5036622610 @default.
- W2029967554 creator A5040540560 @default.
- W2029967554 creator A5051914974 @default.
- W2029967554 date "2015-02-21" @default.
- W2029967554 modified "2023-09-26" @default.
- W2029967554 title "Evaluation efficiency of large-scale data set with negative data: an artificial neural network approach" @default.
- W2029967554 cites W1498436455 @default.
- W2029967554 cites W1977539771 @default.
- W2029967554 cites W1995341919 @default.
- W2029967554 cites W2002927225 @default.
- W2029967554 cites W2008088727 @default.
- W2029967554 cites W2033613029 @default.
- W2029967554 cites W2034741255 @default.
- W2029967554 cites W2041198409 @default.
- W2029967554 cites W2044272811 @default.
- W2029967554 cites W2048804039 @default.
- W2029967554 cites W2051190542 @default.
- W2029967554 cites W2064267606 @default.
- W2029967554 cites W2069743679 @default.
- W2029967554 cites W2076452041 @default.
- W2029967554 cites W2084032987 @default.
- W2029967554 cites W2092667551 @default.
- W2029967554 cites W2129763896 @default.
- W2029967554 cites W2142208547 @default.
- W2029967554 cites W2155482699 @default.
- W2029967554 cites W3024058465 @default.
- W2029967554 cites W3122779978 @default.
- W2029967554 cites W4238586295 @default.
- W2029967554 doi "https://doi.org/10.1007/s11227-015-1387-y" @default.
- W2029967554 hasPublicationYear "2015" @default.
- W2029967554 type Work @default.
- W2029967554 sameAs 2029967554 @default.
- W2029967554 citedByCount "11" @default.
- W2029967554 countsByYear W20299675542016 @default.
- W2029967554 countsByYear W20299675542017 @default.
- W2029967554 countsByYear W20299675542018 @default.
- W2029967554 countsByYear W20299675542019 @default.
- W2029967554 countsByYear W20299675542020 @default.
- W2029967554 countsByYear W20299675542021 @default.
- W2029967554 countsByYear W20299675542022 @default.
- W2029967554 countsByYear W20299675542023 @default.
- W2029967554 crossrefType "journal-article" @default.
- W2029967554 hasAuthorship W2029967554A5036622610 @default.
- W2029967554 hasAuthorship W2029967554A5040540560 @default.
- W2029967554 hasAuthorship W2029967554A5051914974 @default.
- W2029967554 hasBestOaLocation W20299675542 @default.
- W2029967554 hasConcept C119857082 @default.
- W2029967554 hasConcept C121332964 @default.
- W2029967554 hasConcept C124101348 @default.
- W2029967554 hasConcept C126255220 @default.
- W2029967554 hasConcept C139719470 @default.
- W2029967554 hasConcept C154945302 @default.
- W2029967554 hasConcept C162324750 @default.
- W2029967554 hasConcept C177264268 @default.
- W2029967554 hasConcept C199360897 @default.
- W2029967554 hasConcept C204983608 @default.
- W2029967554 hasConcept C22088475 @default.
- W2029967554 hasConcept C2778755073 @default.
- W2029967554 hasConcept C33923547 @default.
- W2029967554 hasConcept C41008148 @default.
- W2029967554 hasConcept C50644808 @default.
- W2029967554 hasConcept C58489278 @default.
- W2029967554 hasConcept C62520636 @default.
- W2029967554 hasConceptScore W2029967554C119857082 @default.
- W2029967554 hasConceptScore W2029967554C121332964 @default.
- W2029967554 hasConceptScore W2029967554C124101348 @default.
- W2029967554 hasConceptScore W2029967554C126255220 @default.
- W2029967554 hasConceptScore W2029967554C139719470 @default.
- W2029967554 hasConceptScore W2029967554C154945302 @default.
- W2029967554 hasConceptScore W2029967554C162324750 @default.
- W2029967554 hasConceptScore W2029967554C177264268 @default.
- W2029967554 hasConceptScore W2029967554C199360897 @default.
- W2029967554 hasConceptScore W2029967554C204983608 @default.
- W2029967554 hasConceptScore W2029967554C22088475 @default.
- W2029967554 hasConceptScore W2029967554C2778755073 @default.
- W2029967554 hasConceptScore W2029967554C33923547 @default.
- W2029967554 hasConceptScore W2029967554C41008148 @default.
- W2029967554 hasConceptScore W2029967554C50644808 @default.
- W2029967554 hasConceptScore W2029967554C58489278 @default.
- W2029967554 hasConceptScore W2029967554C62520636 @default.
- W2029967554 hasIssue "7" @default.
- W2029967554 hasLocation W20299675541 @default.
- W2029967554 hasLocation W20299675542 @default.
- W2029967554 hasOpenAccess W2029967554 @default.
- W2029967554 hasPrimaryLocation W20299675541 @default.
- W2029967554 hasRelatedWork W1544019696 @default.
- W2029967554 hasRelatedWork W2172200718 @default.
- W2029967554 hasRelatedWork W2215648440 @default.
- W2029967554 hasRelatedWork W2376256207 @default.
- W2029967554 hasRelatedWork W2966207284 @default.
- W2029967554 hasRelatedWork W3095383000 @default.
- W2029967554 hasRelatedWork W3123345447 @default.
- W2029967554 hasRelatedWork W3129102840 @default.
- W2029967554 hasRelatedWork W4301095126 @default.
- W2029967554 hasRelatedWork W1629725936 @default.
- W2029967554 hasVolume "71" @default.