Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029991569> ?p ?o ?g. }
- W2029991569 endingPage "1272" @default.
- W2029991569 startingPage "1247" @default.
- W2029991569 abstract "Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or between species (reticulation due to lateral gene transfer and hybrid speciation). The central algorithmic problems are to reconstruct a plausible history of mutations and non-tree-like events, or to determine the minimum number of such events needed to derive a given set of binary sequences, allowing one mutation per site. Meiotic recombination, reticulation and recurrent mutation can cause conflict or incompatibility between pairs of sites (or characters) of the input. Previously, we used “conflict graphs” and “incompatibility graphs” to compute lower bounds on the minimum number of recombination nodes needed, and to efficiently solve constrained cases of the minimization problem. Those results exposed the structural and algorithmic importance of the non-trivial connected components of those two graphs. In this paper, we more fully develop the structural importance of non-trivial connected components of the incompatibility and conflict graphs, proving a general decomposition theorem (Gusfield and Bansal, 2005) for phylogenetic networks. The decomposition theorem depends only on the incompatibilities in the input sequences, and hence applies to many types of phylogenetic networks, and to any biological phenomena that causes pairwise incompatibilities. More generally, the proof of the decomposition theorem exposes a maximal embedded tree structure that exists in the network when the sequences cannot be derived on a perfect phylogenetic tree. This extends the theory of perfect phylogeny in a natural and important way. The proof is constructive and leads to a polynomial-time algorithm to find the unique underlying maximal tree structure. We next examine and fully solve the major open question from Gusfield and Bansal (2005): Is it true that for every input there must be a fully decomposed phylogenetic network that minimizes the number of recombination nodes used, over all phylogenetic networks for the input. We previously conjectured that the answer is yes. In this paper, we show that the answer in is no, both for the case that only single-crossover recombination is allowed, and also for the case that unbounded multiple-crossover recombination is allowed. The latter case also resolves a conjecture recently stated in (Huson and Klopper, 2007) in the context of reticulation networks. Although the conjecture from Gusfield and Bansal (2005) is disproved in general, we show that the answer to the conjecture is yes in several natural special cases, and establish necessary combinatorial structure that counterexamples to the conjecture must posses. We also show that counterexamples to the conjecture are rare (for the case of single-crossover recombination) in simulated data." @default.
- W2029991569 created "2016-06-24" @default.
- W2029991569 creator A5028801735 @default.
- W2029991569 creator A5040822940 @default.
- W2029991569 creator A5050837693 @default.
- W2029991569 creator A5062896251 @default.
- W2029991569 date "2007-12-01" @default.
- W2029991569 modified "2023-10-14" @default.
- W2029991569 title "A Decomposition Theory for Phylogenetic Networks and Incompatible Characters" @default.
- W2029991569 cites W1549202508 @default.
- W2029991569 cites W1580819302 @default.
- W2029991569 cites W1830906757 @default.
- W2029991569 cites W1834060250 @default.
- W2029991569 cites W1964853169 @default.
- W2029991569 cites W1975676017 @default.
- W2029991569 cites W1979900996 @default.
- W2029991569 cites W1987646246 @default.
- W2029991569 cites W1990059547 @default.
- W2029991569 cites W2008006702 @default.
- W2029991569 cites W2026152438 @default.
- W2029991569 cites W2033455461 @default.
- W2029991569 cites W2033833391 @default.
- W2029991569 cites W2037655215 @default.
- W2029991569 cites W2045727226 @default.
- W2029991569 cites W2049931279 @default.
- W2029991569 cites W2054547415 @default.
- W2029991569 cites W2072362336 @default.
- W2029991569 cites W2073395878 @default.
- W2029991569 cites W2074507113 @default.
- W2029991569 cites W2082118300 @default.
- W2029991569 cites W2096967818 @default.
- W2029991569 cites W2097276024 @default.
- W2029991569 cites W2110570734 @default.
- W2029991569 cites W2116652744 @default.
- W2029991569 cites W2118780696 @default.
- W2029991569 cites W2124253802 @default.
- W2029991569 cites W2134599124 @default.
- W2029991569 cites W2140847403 @default.
- W2029991569 cites W2143424400 @default.
- W2029991569 cites W2145371252 @default.
- W2029991569 cites W2168181417 @default.
- W2029991569 cites W2169801109 @default.
- W2029991569 doi "https://doi.org/10.1089/cmb.2006.0137" @default.
- W2029991569 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2581772" @default.
- W2029991569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18047426" @default.
- W2029991569 hasPublicationYear "2007" @default.
- W2029991569 type Work @default.
- W2029991569 sameAs 2029991569 @default.
- W2029991569 citedByCount "50" @default.
- W2029991569 countsByYear W20299915692012 @default.
- W2029991569 countsByYear W20299915692014 @default.
- W2029991569 countsByYear W20299915692015 @default.
- W2029991569 countsByYear W20299915692016 @default.
- W2029991569 countsByYear W20299915692017 @default.
- W2029991569 countsByYear W20299915692018 @default.
- W2029991569 countsByYear W20299915692019 @default.
- W2029991569 countsByYear W20299915692022 @default.
- W2029991569 countsByYear W20299915692023 @default.
- W2029991569 crossrefType "journal-article" @default.
- W2029991569 hasAuthorship W2029991569A5028801735 @default.
- W2029991569 hasAuthorship W2029991569A5040822940 @default.
- W2029991569 hasAuthorship W2029991569A5050837693 @default.
- W2029991569 hasAuthorship W2029991569A5062896251 @default.
- W2029991569 hasBestOaLocation W20299915692 @default.
- W2029991569 hasConcept C104317684 @default.
- W2029991569 hasConcept C113174947 @default.
- W2029991569 hasConcept C114614502 @default.
- W2029991569 hasConcept C154945302 @default.
- W2029991569 hasConcept C184898388 @default.
- W2029991569 hasConcept C193252679 @default.
- W2029991569 hasConcept C26619641 @default.
- W2029991569 hasConcept C33923547 @default.
- W2029991569 hasConcept C41008148 @default.
- W2029991569 hasConcept C54355233 @default.
- W2029991569 hasConcept C80444323 @default.
- W2029991569 hasConcept C86803240 @default.
- W2029991569 hasConceptScore W2029991569C104317684 @default.
- W2029991569 hasConceptScore W2029991569C113174947 @default.
- W2029991569 hasConceptScore W2029991569C114614502 @default.
- W2029991569 hasConceptScore W2029991569C154945302 @default.
- W2029991569 hasConceptScore W2029991569C184898388 @default.
- W2029991569 hasConceptScore W2029991569C193252679 @default.
- W2029991569 hasConceptScore W2029991569C26619641 @default.
- W2029991569 hasConceptScore W2029991569C33923547 @default.
- W2029991569 hasConceptScore W2029991569C41008148 @default.
- W2029991569 hasConceptScore W2029991569C54355233 @default.
- W2029991569 hasConceptScore W2029991569C80444323 @default.
- W2029991569 hasConceptScore W2029991569C86803240 @default.
- W2029991569 hasIssue "10" @default.
- W2029991569 hasLocation W20299915691 @default.
- W2029991569 hasLocation W20299915692 @default.
- W2029991569 hasLocation W20299915693 @default.
- W2029991569 hasLocation W20299915694 @default.
- W2029991569 hasOpenAccess W2029991569 @default.
- W2029991569 hasPrimaryLocation W20299915691 @default.
- W2029991569 hasRelatedWork W1595549040 @default.
- W2029991569 hasRelatedWork W1844957168 @default.
- W2029991569 hasRelatedWork W2295960879 @default.