Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030021585> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2030021585 abstract "Mining massive temporal data streams for significant trends, emerging buzz, and unusually high or low activity is an important problem with several commercial applications. In this paper, we propose a framework based on relational records and metric spaces to study such problems. Our framework provides the necessary mathematical underpinnings for this genre of problems, and leads to efficient algorithms in the stream/sort model of massive data sets (where the algorithm makes passes over the data, computes a new stream on the fly, and is allowed to sort the intermediate data). Our algorithm makes novel use of metric approximations in the data stream context, and highlights the role of hierarchical organization of large data sets in designing efficient algorithms in the stream/sort model." @default.
- W2030021585 created "2016-06-24" @default.
- W2030021585 creator A5034629063 @default.
- W2030021585 creator A5039201046 @default.
- W2030021585 date "2004-01-01" @default.
- W2030021585 modified "2023-10-16" @default.
- W2030021585 title "Framework and algorithms for trend analysis in massive temporal data sets" @default.
- W2030021585 cites W1506285740 @default.
- W2030021585 cites W1516469158 @default.
- W2030021585 cites W1551623921 @default.
- W2030021585 cites W189929561 @default.
- W2030021585 cites W1977496278 @default.
- W2030021585 cites W2002847183 @default.
- W2030021585 cites W2010657328 @default.
- W2030021585 cites W2026302857 @default.
- W2030021585 cites W2041571997 @default.
- W2030021585 cites W2045948812 @default.
- W2030021585 cites W2047424291 @default.
- W2030021585 cites W2068714596 @default.
- W2030021585 cites W2080745194 @default.
- W2030021585 cites W2100758984 @default.
- W2030021585 cites W2106163100 @default.
- W2030021585 cites W2112452856 @default.
- W2030021585 cites W2114493937 @default.
- W2030021585 cites W2141441292 @default.
- W2030021585 cites W2163964823 @default.
- W2030021585 doi "https://doi.org/10.1145/1031171.1031208" @default.
- W2030021585 hasPublicationYear "2004" @default.
- W2030021585 type Work @default.
- W2030021585 sameAs 2030021585 @default.
- W2030021585 citedByCount "14" @default.
- W2030021585 countsByYear W20300215852014 @default.
- W2030021585 countsByYear W20300215852018 @default.
- W2030021585 countsByYear W20300215852019 @default.
- W2030021585 countsByYear W20300215852021 @default.
- W2030021585 crossrefType "proceedings-article" @default.
- W2030021585 hasAuthorship W2030021585A5034629063 @default.
- W2030021585 hasAuthorship W2030021585A5039201046 @default.
- W2030021585 hasConcept C11413529 @default.
- W2030021585 hasConcept C124101348 @default.
- W2030021585 hasConcept C41008148 @default.
- W2030021585 hasConceptScore W2030021585C11413529 @default.
- W2030021585 hasConceptScore W2030021585C124101348 @default.
- W2030021585 hasConceptScore W2030021585C41008148 @default.
- W2030021585 hasLocation W20300215851 @default.
- W2030021585 hasOpenAccess W2030021585 @default.
- W2030021585 hasPrimaryLocation W20300215851 @default.
- W2030021585 hasRelatedWork W2333698505 @default.
- W2030021585 hasRelatedWork W2347219288 @default.
- W2030021585 hasRelatedWork W2348097614 @default.
- W2030021585 hasRelatedWork W2351491280 @default.
- W2030021585 hasRelatedWork W2354822586 @default.
- W2030021585 hasRelatedWork W2366221835 @default.
- W2030021585 hasRelatedWork W2371447506 @default.
- W2030021585 hasRelatedWork W2386767533 @default.
- W2030021585 hasRelatedWork W303980170 @default.
- W2030021585 hasRelatedWork W3149424243 @default.
- W2030021585 isParatext "false" @default.
- W2030021585 isRetracted "false" @default.
- W2030021585 magId "2030021585" @default.
- W2030021585 workType "article" @default.