Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030165619> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2030165619 endingPage "288" @default.
- W2030165619 startingPage "281" @default.
- W2030165619 abstract "Wireless Body Area Networks (WBANs) consist of tiny Biomedical Wireless Sensors (BWSs) and a Gate Way (GW) to connect to the external databases in the hospital and medical centres. The GW could connect the BWSs, to a range of wireless telecommunication networks. These wireless telecommunication networks could be either a mobile phone network, a standard telephone network, a dedicated medical centre or using public Wireless Local Area Networks (WLANs) nodes also known a Wi-Fi system. The electrocardiogram (ECG) signals are widely used in health care systems because they are non-invasive mechanisms to establish medical diagnosis of heart diseases. The current ECG systems suffer from important limitations: limited patient's mobility, limited energy, limited on wireless applications. The main drawback of current ECG systems is the location-specific nature of the .systems due to the use of fixed/wired applications. That is why; there is a critical need to improve the current ECG systems to cover security handling and to achieve extended patient's mobility. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Block Sparse Bayesian Learning (BSBL) framework is used to provide a robust low sampling-rate approach for normal and abnormal ECG signals. Advanced WBANs based on our approach will be able to deliver healthcare not only to patients in hospital and medical centres; but also in their homes and workplaces thus offering cost saving, and improving the quality of life. Our simulation results based on two proposed algorithms illustrate 15% incensement of Signal to Noise Ratio (SNR) and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices." @default.
- W2030165619 created "2016-06-24" @default.
- W2030165619 creator A5042529202 @default.
- W2030165619 creator A5057895336 @default.
- W2030165619 creator A5086845888 @default.
- W2030165619 date "2013-01-01" @default.
- W2030165619 modified "2023-09-24" @default.
- W2030165619 title "Low Sampling-rate Approach for ECG Signals with Compressed Sensing Theory" @default.
- W2030165619 cites W1964897957 @default.
- W2030165619 cites W1965686981 @default.
- W2030165619 cites W1980371694 @default.
- W2030165619 cites W2001084019 @default.
- W2030165619 cites W2061832979 @default.
- W2030165619 cites W2075196751 @default.
- W2030165619 cites W2097394806 @default.
- W2030165619 cites W2106759147 @default.
- W2030165619 cites W2113591819 @default.
- W2030165619 cites W2115488979 @default.
- W2030165619 cites W2128092100 @default.
- W2030165619 cites W2134207998 @default.
- W2030165619 cites W2139821650 @default.
- W2030165619 cites W2143698637 @default.
- W2030165619 cites W2166401126 @default.
- W2030165619 cites W2169382889 @default.
- W2030165619 cites W2172186697 @default.
- W2030165619 cites W3142414448 @default.
- W2030165619 doi "https://doi.org/10.1016/j.procs.2013.06.040" @default.
- W2030165619 hasPublicationYear "2013" @default.
- W2030165619 type Work @default.
- W2030165619 sameAs 2030165619 @default.
- W2030165619 citedByCount "3" @default.
- W2030165619 countsByYear W20301656192014 @default.
- W2030165619 countsByYear W20301656192015 @default.
- W2030165619 crossrefType "journal-article" @default.
- W2030165619 hasAuthorship W2030165619A5042529202 @default.
- W2030165619 hasAuthorship W2030165619A5057895336 @default.
- W2030165619 hasAuthorship W2030165619A5086845888 @default.
- W2030165619 hasBestOaLocation W20301656191 @default.
- W2030165619 hasConcept C108037233 @default.
- W2030165619 hasConcept C115961682 @default.
- W2030165619 hasConcept C124851039 @default.
- W2030165619 hasConcept C154945302 @default.
- W2030165619 hasConcept C31258907 @default.
- W2030165619 hasConcept C41008148 @default.
- W2030165619 hasConcept C508800617 @default.
- W2030165619 hasConcept C555944384 @default.
- W2030165619 hasConcept C76155785 @default.
- W2030165619 hasConcept C79403827 @default.
- W2030165619 hasConcept C88737568 @default.
- W2030165619 hasConcept C99498987 @default.
- W2030165619 hasConceptScore W2030165619C108037233 @default.
- W2030165619 hasConceptScore W2030165619C115961682 @default.
- W2030165619 hasConceptScore W2030165619C124851039 @default.
- W2030165619 hasConceptScore W2030165619C154945302 @default.
- W2030165619 hasConceptScore W2030165619C31258907 @default.
- W2030165619 hasConceptScore W2030165619C41008148 @default.
- W2030165619 hasConceptScore W2030165619C508800617 @default.
- W2030165619 hasConceptScore W2030165619C555944384 @default.
- W2030165619 hasConceptScore W2030165619C76155785 @default.
- W2030165619 hasConceptScore W2030165619C79403827 @default.
- W2030165619 hasConceptScore W2030165619C88737568 @default.
- W2030165619 hasConceptScore W2030165619C99498987 @default.
- W2030165619 hasLocation W20301656191 @default.
- W2030165619 hasLocation W20301656192 @default.
- W2030165619 hasOpenAccess W2030165619 @default.
- W2030165619 hasPrimaryLocation W20301656191 @default.
- W2030165619 hasRelatedWork W157802213 @default.
- W2030165619 hasRelatedWork W1631681288 @default.
- W2030165619 hasRelatedWork W2040273206 @default.
- W2030165619 hasRelatedWork W2512844215 @default.
- W2030165619 hasRelatedWork W2601964555 @default.
- W2030165619 hasRelatedWork W2607247987 @default.
- W2030165619 hasRelatedWork W3005787259 @default.
- W2030165619 hasRelatedWork W4307925126 @default.
- W2030165619 hasRelatedWork W4307993090 @default.
- W2030165619 hasRelatedWork W2182281394 @default.
- W2030165619 hasVolume "19" @default.
- W2030165619 isParatext "false" @default.
- W2030165619 isRetracted "false" @default.
- W2030165619 magId "2030165619" @default.
- W2030165619 workType "article" @default.