Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030221275> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2030221275 endingPage "525" @default.
- W2030221275 startingPage "499" @default.
- W2030221275 abstract "Soient X une courbe complexe, lisse, projective et connexe et G un groupe algébrique complexe, simple et simplement connexe. Nous calculons le groupe de Picard du champ des G-fibrés quasi-paraboliques sur X, décrivons explicitement ses générateurs pour G de type classique ou G2, puis identifions les espaces de sections globales correspondants avec les espaces de vacua de Tsuchiya, Ueno et Yamada. La méthode utilise le théorème d'uniformisation qui décrit ces champs comme doubles quotients de certains groupes algébriques de dimension infinie. Nous décrivons le fibré dualisant du champ des G-fibrés et montrons qu'il admet une unique racine carrée, que nous construisons explicitement. Si G n'est pas simplement connexe, la racine carrée dépend du choix d'une thêta-caractéristique. Ces résultats sur les champs permettent de retrouver le théorème de Drezet et Narasimhan (pour l'espace de modules grossier) et de montrer un énoncé analogue dans le cas G = Sp2r. Nous montrons aussi que le module grossier des SOr-fibrés n'est pas localement factoriel pour r ≥ 7. Let X be a complex, smooth, complete and connected curve and G be a complex simple and simply connected algebraic group. We compute the Picard group of the stack of quasi-parabolic G-bundles over X, describe explicitly its generators for classical G and G2 and then identify the corresponding spaces of global sections with the vacua spaces of Tsuchiya, Ueno and Yamada. The method uses the uniformization theorem which describes these stacks as double quotients of certain infinite dimensional algebraic groups. We describe also the dualizing bundle of the stack of G-bundles and show that it admits a unique square root, which we construct explicitly. If G is not simply connected, the square root depends on the choice of a theta-characteristic. These results about stacks allow to recover the Drezet-Narasimhan theorem (for the coarse moduli space) and to show an analogous statement when G = Sp2r. We prove also that the coarse moduli spaces of semi-stable SOr-bundles are not locally factorial for r ≥ 7." @default.
- W2030221275 created "2016-06-24" @default.
- W2030221275 creator A5050122475 @default.
- W2030221275 creator A5052726433 @default.
- W2030221275 date "1997-01-01" @default.
- W2030221275 modified "2023-10-18" @default.
- W2030221275 title "The line bundles on the moduli of parabolic G-bundles over curves and their sections" @default.
- W2030221275 cites W1480309203 @default.
- W2030221275 cites W1491626871 @default.
- W2030221275 cites W1519218436 @default.
- W2030221275 cites W1569666450 @default.
- W2030221275 cites W158028641 @default.
- W2030221275 cites W1642629289 @default.
- W2030221275 cites W169258215 @default.
- W2030221275 cites W1978717359 @default.
- W2030221275 cites W1985397403 @default.
- W2030221275 cites W1990983154 @default.
- W2030221275 cites W2011585157 @default.
- W2030221275 cites W2017499636 @default.
- W2030221275 cites W2059184193 @default.
- W2030221275 cites W2064925643 @default.
- W2030221275 cites W2168701625 @default.
- W2030221275 cites W2227092965 @default.
- W2030221275 cites W2464445995 @default.
- W2030221275 cites W2526290240 @default.
- W2030221275 cites W2963694601 @default.
- W2030221275 cites W606870575 @default.
- W2030221275 cites W1965481605 @default.
- W2030221275 doi "https://doi.org/10.1016/s0012-9593(97)89929-6" @default.
- W2030221275 hasPublicationYear "1997" @default.
- W2030221275 type Work @default.
- W2030221275 sameAs 2030221275 @default.
- W2030221275 citedByCount "217" @default.
- W2030221275 countsByYear W20302212752012 @default.
- W2030221275 countsByYear W20302212752013 @default.
- W2030221275 countsByYear W20302212752014 @default.
- W2030221275 countsByYear W20302212752015 @default.
- W2030221275 countsByYear W20302212752016 @default.
- W2030221275 countsByYear W20302212752017 @default.
- W2030221275 countsByYear W20302212752018 @default.
- W2030221275 countsByYear W20302212752019 @default.
- W2030221275 countsByYear W20302212752020 @default.
- W2030221275 countsByYear W20302212752021 @default.
- W2030221275 countsByYear W20302212752022 @default.
- W2030221275 countsByYear W20302212752023 @default.
- W2030221275 crossrefType "journal-article" @default.
- W2030221275 hasAuthorship W2030221275A5050122475 @default.
- W2030221275 hasAuthorship W2030221275A5052726433 @default.
- W2030221275 hasBestOaLocation W20302212752 @default.
- W2030221275 hasConcept C142362112 @default.
- W2030221275 hasConcept C15708023 @default.
- W2030221275 hasConcept C199360897 @default.
- W2030221275 hasConcept C202444582 @default.
- W2030221275 hasConcept C207043602 @default.
- W2030221275 hasConcept C33923547 @default.
- W2030221275 hasConcept C41008148 @default.
- W2030221275 hasConcept C73373263 @default.
- W2030221275 hasConcept C9395851 @default.
- W2030221275 hasConceptScore W2030221275C142362112 @default.
- W2030221275 hasConceptScore W2030221275C15708023 @default.
- W2030221275 hasConceptScore W2030221275C199360897 @default.
- W2030221275 hasConceptScore W2030221275C202444582 @default.
- W2030221275 hasConceptScore W2030221275C207043602 @default.
- W2030221275 hasConceptScore W2030221275C33923547 @default.
- W2030221275 hasConceptScore W2030221275C41008148 @default.
- W2030221275 hasConceptScore W2030221275C73373263 @default.
- W2030221275 hasConceptScore W2030221275C9395851 @default.
- W2030221275 hasIssue "4" @default.
- W2030221275 hasLocation W20302212751 @default.
- W2030221275 hasLocation W20302212752 @default.
- W2030221275 hasLocation W20302212753 @default.
- W2030221275 hasOpenAccess W2030221275 @default.
- W2030221275 hasPrimaryLocation W20302212751 @default.
- W2030221275 hasRelatedWork W1579424209 @default.
- W2030221275 hasRelatedWork W1766885312 @default.
- W2030221275 hasRelatedWork W1921451955 @default.
- W2030221275 hasRelatedWork W1927071250 @default.
- W2030221275 hasRelatedWork W2073994398 @default.
- W2030221275 hasRelatedWork W2117918982 @default.
- W2030221275 hasRelatedWork W2950408913 @default.
- W2030221275 hasRelatedWork W2963708661 @default.
- W2030221275 hasRelatedWork W2964202745 @default.
- W2030221275 hasRelatedWork W4320838729 @default.
- W2030221275 hasVolume "30" @default.
- W2030221275 isParatext "false" @default.
- W2030221275 isRetracted "false" @default.
- W2030221275 magId "2030221275" @default.
- W2030221275 workType "article" @default.