Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030280844> ?p ?o ?g. }
- W2030280844 abstract "A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement." @default.
- W2030280844 created "2016-06-24" @default.
- W2030280844 creator A5034905317 @default.
- W2030280844 creator A5039116799 @default.
- W2030280844 creator A5049034317 @default.
- W2030280844 creator A5062830302 @default.
- W2030280844 creator A5073878962 @default.
- W2030280844 creator A5084013215 @default.
- W2030280844 date "2005-02-15" @default.
- W2030280844 modified "2023-10-16" @default.
- W2030280844 title "<i>Ab initio</i> potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks" @default.
- W2030280844 cites W1510921922 @default.
- W2030280844 cites W1618945272 @default.
- W2030280844 cites W1634997895 @default.
- W2030280844 cites W1948706671 @default.
- W2030280844 cites W1955848226 @default.
- W2030280844 cites W1966705862 @default.
- W2030280844 cites W1966864149 @default.
- W2030280844 cites W1967108496 @default.
- W2030280844 cites W1970632979 @default.
- W2030280844 cites W1970898517 @default.
- W2030280844 cites W1972529701 @default.
- W2030280844 cites W1975415270 @default.
- W2030280844 cites W1977623542 @default.
- W2030280844 cites W1978940496 @default.
- W2030280844 cites W1980733220 @default.
- W2030280844 cites W1984510786 @default.
- W2030280844 cites W1988291724 @default.
- W2030280844 cites W1989921904 @default.
- W2030280844 cites W1991208595 @default.
- W2030280844 cites W1993191606 @default.
- W2030280844 cites W1998231695 @default.
- W2030280844 cites W2001446276 @default.
- W2030280844 cites W2001999031 @default.
- W2030280844 cites W2003249151 @default.
- W2030280844 cites W2006552713 @default.
- W2030280844 cites W2009546685 @default.
- W2030280844 cites W2013616514 @default.
- W2030280844 cites W2015964699 @default.
- W2030280844 cites W2017030303 @default.
- W2030280844 cites W2018065950 @default.
- W2030280844 cites W2018863431 @default.
- W2030280844 cites W2020731138 @default.
- W2030280844 cites W2021681196 @default.
- W2030280844 cites W2021891874 @default.
- W2030280844 cites W2023616054 @default.
- W2030280844 cites W2025024780 @default.
- W2030280844 cites W2025667399 @default.
- W2030280844 cites W2026371600 @default.
- W2030280844 cites W2027049592 @default.
- W2030280844 cites W2032969394 @default.
- W2030280844 cites W2033086537 @default.
- W2030280844 cites W2036034530 @default.
- W2030280844 cites W2038660844 @default.
- W2030280844 cites W2038677264 @default.
- W2030280844 cites W2044528046 @default.
- W2030280844 cites W2046659320 @default.
- W2030280844 cites W2051967976 @default.
- W2030280844 cites W2052295668 @default.
- W2030280844 cites W2060313281 @default.
- W2030280844 cites W2061179540 @default.
- W2030280844 cites W2063186343 @default.
- W2030280844 cites W2063739545 @default.
- W2030280844 cites W2067867161 @default.
- W2030280844 cites W2069739348 @default.
- W2030280844 cites W2072411508 @default.
- W2030280844 cites W2072558347 @default.
- W2030280844 cites W2072999127 @default.
- W2030280844 cites W2074697181 @default.
- W2030280844 cites W2076558416 @default.
- W2030280844 cites W2078032057 @default.
- W2030280844 cites W2080380742 @default.
- W2030280844 cites W2084593285 @default.
- W2030280844 cites W2091906521 @default.
- W2030280844 cites W2092148799 @default.
- W2030280844 cites W2095004019 @default.
- W2030280844 cites W2099150981 @default.
- W2030280844 cites W2111051539 @default.
- W2030280844 cites W2113600611 @default.
- W2030280844 cites W2135520967 @default.
- W2030280844 cites W2137983211 @default.
- W2030280844 cites W2140651427 @default.
- W2030280844 cites W2147415793 @default.
- W2030280844 cites W2155482699 @default.
- W2030280844 cites W2158581396 @default.
- W2030280844 cites W2415374455 @default.
- W2030280844 cites W242422246 @default.
- W2030280844 cites W2950674591 @default.
- W2030280844 cites W2986970919 @default.
- W2030280844 cites W3037175162 @default.
- W2030280844 cites W4237546504 @default.
- W2030280844 cites W4253515339 @default.
- W2030280844 doi "https://doi.org/10.1063/1.1850458" @default.
- W2030280844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15836017" @default.
- W2030280844 hasPublicationYear "2005" @default.
- W2030280844 type Work @default.
- W2030280844 sameAs 2030280844 @default.
- W2030280844 citedByCount "133" @default.
- W2030280844 countsByYear W20302808442012 @default.
- W2030280844 countsByYear W20302808442013 @default.