Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030477042> ?p ?o ?g. }
- W2030477042 endingPage "331" @default.
- W2030477042 startingPage "317" @default.
- W2030477042 abstract "In simulating biofluid flow domains, structured hexahedral meshes are often associated with high quality solutions. However, extensive time and effort are required to generate these meshes for complex branching geometries. This study evaluates potential mesh configurations that may maintain the advantages of the structured hexahedral style while providing significant savings in grid construction time and complexity. Specifically, the objective of this study is to evaluate the performance of unstructured hexahedral, prismatic and hybrid meshes based on grid convergence and local particle deposition fractions in a bifurcating model of the respiratory tract. A grid convergence index (GCI) has been implemented to assess the mesh-independence of solutions in cases where true grid halving is not feasible. Localized and total deposition values have been evaluated for particles ranging from 1 through 10 μm in planar and out-of-plane geometries. Structured hexahedral, unstructured hexahedral and prismatic meshes were found to provide GCI values of approximately 5% and nearly identical velocity fields. In contrast, the hexahedral–tetrahedral hybrid model resulted in GCI values that were significantly higher in comparison to the other meshes. The resulting velocity field for the hybrid configuration differed from the hexahedral and prismatic solutions by up to an order of magnitude at some locations. Considering the deposition of 10 μm particles in the planar configuration, all meshes considered provided relatively close agreement (2–20% difference) with an available experimental study. For all particle sizes considered, local and total deposition results for the structured and unstructured hexahedral meshes were similar. In contrast, the prismatic and hybrid geometries resulted in significantly higher deposition rates when compared to the hexahedral meshes for particles less than 10 μm. As a result, only the unstructured hexahedral mesh was found to provide overall performance similar to the structured hexahedral configuration with the advantage of a significant savings in construction time. These results emphasize the importance of aligning control volume gridlines with the predominant flow direction in biofluid applications that involve long and thin internal flow domains. Future studies are needed to assess other forms of the hybrid configuration and the effects of other element styles." @default.
- W2030477042 created "2016-06-24" @default.
- W2030477042 creator A5037822615 @default.
- W2030477042 creator A5045981743 @default.
- W2030477042 date "2008-03-01" @default.
- W2030477042 modified "2023-09-26" @default.
- W2030477042 title "Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics" @default.
- W2030477042 cites W1501270593 @default.
- W2030477042 cites W1910557777 @default.
- W2030477042 cites W1970469752 @default.
- W2030477042 cites W1973314203 @default.
- W2030477042 cites W1977068333 @default.
- W2030477042 cites W1978010839 @default.
- W2030477042 cites W1978697933 @default.
- W2030477042 cites W1979313502 @default.
- W2030477042 cites W1980898338 @default.
- W2030477042 cites W1983719759 @default.
- W2030477042 cites W1983907259 @default.
- W2030477042 cites W1988889234 @default.
- W2030477042 cites W1992645751 @default.
- W2030477042 cites W2001254532 @default.
- W2030477042 cites W2010706892 @default.
- W2030477042 cites W2016223189 @default.
- W2030477042 cites W2019599859 @default.
- W2030477042 cites W2019658471 @default.
- W2030477042 cites W2020090114 @default.
- W2030477042 cites W2025471734 @default.
- W2030477042 cites W2030077285 @default.
- W2030477042 cites W2030327499 @default.
- W2030477042 cites W2041472021 @default.
- W2030477042 cites W2042466888 @default.
- W2030477042 cites W2046434722 @default.
- W2030477042 cites W2047537755 @default.
- W2030477042 cites W2051993919 @default.
- W2030477042 cites W2063725191 @default.
- W2030477042 cites W2064462763 @default.
- W2030477042 cites W2068606682 @default.
- W2030477042 cites W2068964430 @default.
- W2030477042 cites W2071839803 @default.
- W2030477042 cites W2075191063 @default.
- W2030477042 cites W2078937753 @default.
- W2030477042 cites W2081179340 @default.
- W2030477042 cites W2089295827 @default.
- W2030477042 cites W2093385480 @default.
- W2030477042 cites W2093399503 @default.
- W2030477042 cites W2095615971 @default.
- W2030477042 cites W2096001305 @default.
- W2030477042 cites W2109168069 @default.
- W2030477042 cites W2110945821 @default.
- W2030477042 cites W2113135853 @default.
- W2030477042 cites W2119033746 @default.
- W2030477042 cites W2119997381 @default.
- W2030477042 cites W2122396341 @default.
- W2030477042 cites W2132450451 @default.
- W2030477042 cites W2132916726 @default.
- W2030477042 cites W2135339297 @default.
- W2030477042 cites W2141247092 @default.
- W2030477042 cites W2154772000 @default.
- W2030477042 cites W2159572675 @default.
- W2030477042 cites W2167518105 @default.
- W2030477042 cites W2171742182 @default.
- W2030477042 cites W3042164605 @default.
- W2030477042 cites W3183380127 @default.
- W2030477042 cites W4239485679 @default.
- W2030477042 cites W4244027872 @default.
- W2030477042 cites W4252176487 @default.
- W2030477042 cites W4252321648 @default.
- W2030477042 doi "https://doi.org/10.1016/j.compfluid.2007.05.001" @default.
- W2030477042 hasPublicationYear "2008" @default.
- W2030477042 type Work @default.
- W2030477042 sameAs 2030477042 @default.
- W2030477042 citedByCount "95" @default.
- W2030477042 countsByYear W20304770422012 @default.
- W2030477042 countsByYear W20304770422013 @default.
- W2030477042 countsByYear W20304770422014 @default.
- W2030477042 countsByYear W20304770422015 @default.
- W2030477042 countsByYear W20304770422016 @default.
- W2030477042 countsByYear W20304770422017 @default.
- W2030477042 countsByYear W20304770422018 @default.
- W2030477042 countsByYear W20304770422019 @default.
- W2030477042 countsByYear W20304770422020 @default.
- W2030477042 countsByYear W20304770422021 @default.
- W2030477042 countsByYear W20304770422022 @default.
- W2030477042 countsByYear W20304770422023 @default.
- W2030477042 crossrefType "journal-article" @default.
- W2030477042 hasAuthorship W2030477042A5037822615 @default.
- W2030477042 hasAuthorship W2030477042A5045981743 @default.
- W2030477042 hasConcept C11413529 @default.
- W2030477042 hasConcept C127413603 @default.
- W2030477042 hasConcept C135628077 @default.
- W2030477042 hasConcept C170589453 @default.
- W2030477042 hasConcept C181145010 @default.
- W2030477042 hasConcept C187691185 @default.
- W2030477042 hasConcept C22411076 @default.
- W2030477042 hasConcept C2524010 @default.
- W2030477042 hasConcept C31487907 @default.
- W2030477042 hasConcept C33923547 @default.
- W2030477042 hasConcept C41008148 @default.