Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030496502> ?p ?o ?g. }
- W2030496502 endingPage "374" @default.
- W2030496502 startingPage "360" @default.
- W2030496502 abstract "A linear mixture model based on calibrated, atmospherically corrected Probe-1 hyperspectral imagery was compared with three vegetation indices to test its relative ability to measure small differences in percent green vegetative cover for areas of sparse vegetation in arid environments. The goal of this research was to compare multispectral and hyperspectral remote sensing approaches for detecting human disturbance of arid environments. The normalized difference vegetation index (NDVI) was tested using both narrow and broad bandwidths. Broadband NDVI provided results r2=0.63 similar to NDVI derived from individual hyperspectral channels r2=0.60. While the soil-adjusted vegetation index (SAVI) was designed as an improvement to NDVI for sparse vegetation, in this study SAVI performed significantly worse than NDVI r2=0.51. The modified soil-adjusted vegetation index (MSAVI) provided an insignificant improvement over NDVI r2=0.64. Linear mixture modeling provided significantly better results, r2 of 0.74. Cross-validation was used to test the significance of differences between the various methods and to determine the standard error associated with each method. Results suggest that any improvements provided by adjusted vegetation indices over NDVI may be strongly dependent on those adjustments being derived from local conditions. The use of a linear mixture model with multiple soil endmembers appears to provide the best method for quantifying sparse vegetative cover. Though present in small amounts, a single plant species, Krameria erecta, was strongly correlated with residuals of the mixture model. Inclusion of a spectral endmember for this species increased the r2 of the fit with percent green cover to 0.86. However, it is not clear if the explained variation was actually due to K. erecta or a correlated phenomena. Problems were also identified with the use of multiple vegetation endmembers." @default.
- W2030496502 created "2016-06-24" @default.
- W2030496502 creator A5000656582 @default.
- W2030496502 creator A5045572774 @default.
- W2030496502 creator A5063357195 @default.
- W2030496502 date "2000-06-01" @default.
- W2030496502 modified "2023-10-16" @default.
- W2030496502 title "Hyperspectral Mixture Modeling for Quantifying Sparse Vegetation Cover in Arid Environments" @default.
- W2030496502 cites W1964217023 @default.
- W2030496502 cites W1967160153 @default.
- W2030496502 cites W1981108347 @default.
- W2030496502 cites W1987097138 @default.
- W2030496502 cites W2000102737 @default.
- W2030496502 cites W2005571987 @default.
- W2030496502 cites W2007650489 @default.
- W2030496502 cites W2012686349 @default.
- W2030496502 cites W2038353908 @default.
- W2030496502 cites W2058530626 @default.
- W2030496502 cites W2062449448 @default.
- W2030496502 cites W2063623478 @default.
- W2030496502 cites W2063885589 @default.
- W2030496502 cites W2085880802 @default.
- W2030496502 cites W2092722122 @default.
- W2030496502 cites W2100903394 @default.
- W2030496502 cites W2110456190 @default.
- W2030496502 cites W2128462828 @default.
- W2030496502 cites W2136625467 @default.
- W2030496502 cites W2154236340 @default.
- W2030496502 cites W2156422688 @default.
- W2030496502 cites W2161170517 @default.
- W2030496502 cites W2299841004 @default.
- W2030496502 cites W3174342316 @default.
- W2030496502 doi "https://doi.org/10.1016/s0034-4257(99)00112-1" @default.
- W2030496502 hasPublicationYear "2000" @default.
- W2030496502 type Work @default.
- W2030496502 sameAs 2030496502 @default.
- W2030496502 citedByCount "185" @default.
- W2030496502 countsByYear W20304965022012 @default.
- W2030496502 countsByYear W20304965022013 @default.
- W2030496502 countsByYear W20304965022014 @default.
- W2030496502 countsByYear W20304965022015 @default.
- W2030496502 countsByYear W20304965022016 @default.
- W2030496502 countsByYear W20304965022017 @default.
- W2030496502 countsByYear W20304965022018 @default.
- W2030496502 countsByYear W20304965022019 @default.
- W2030496502 countsByYear W20304965022020 @default.
- W2030496502 countsByYear W20304965022021 @default.
- W2030496502 countsByYear W20304965022022 @default.
- W2030496502 countsByYear W20304965022023 @default.
- W2030496502 crossrefType "journal-article" @default.
- W2030496502 hasAuthorship W2030496502A5000656582 @default.
- W2030496502 hasAuthorship W2030496502A5045572774 @default.
- W2030496502 hasAuthorship W2030496502A5063357195 @default.
- W2030496502 hasConcept C104541649 @default.
- W2030496502 hasConcept C105795698 @default.
- W2030496502 hasConcept C127313418 @default.
- W2030496502 hasConcept C142724271 @default.
- W2030496502 hasConcept C150772632 @default.
- W2030496502 hasConcept C1549246 @default.
- W2030496502 hasConcept C159078339 @default.
- W2030496502 hasConcept C163175372 @default.
- W2030496502 hasConcept C173163844 @default.
- W2030496502 hasConcept C18903297 @default.
- W2030496502 hasConcept C25989453 @default.
- W2030496502 hasConcept C2776133958 @default.
- W2030496502 hasConcept C2780376076 @default.
- W2030496502 hasConcept C33923547 @default.
- W2030496502 hasConcept C39432304 @default.
- W2030496502 hasConcept C58237817 @default.
- W2030496502 hasConcept C62649853 @default.
- W2030496502 hasConcept C71924100 @default.
- W2030496502 hasConcept C78869512 @default.
- W2030496502 hasConcept C86803240 @default.
- W2030496502 hasConceptScore W2030496502C104541649 @default.
- W2030496502 hasConceptScore W2030496502C105795698 @default.
- W2030496502 hasConceptScore W2030496502C127313418 @default.
- W2030496502 hasConceptScore W2030496502C142724271 @default.
- W2030496502 hasConceptScore W2030496502C150772632 @default.
- W2030496502 hasConceptScore W2030496502C1549246 @default.
- W2030496502 hasConceptScore W2030496502C159078339 @default.
- W2030496502 hasConceptScore W2030496502C163175372 @default.
- W2030496502 hasConceptScore W2030496502C173163844 @default.
- W2030496502 hasConceptScore W2030496502C18903297 @default.
- W2030496502 hasConceptScore W2030496502C25989453 @default.
- W2030496502 hasConceptScore W2030496502C2776133958 @default.
- W2030496502 hasConceptScore W2030496502C2780376076 @default.
- W2030496502 hasConceptScore W2030496502C33923547 @default.
- W2030496502 hasConceptScore W2030496502C39432304 @default.
- W2030496502 hasConceptScore W2030496502C58237817 @default.
- W2030496502 hasConceptScore W2030496502C62649853 @default.
- W2030496502 hasConceptScore W2030496502C71924100 @default.
- W2030496502 hasConceptScore W2030496502C78869512 @default.
- W2030496502 hasConceptScore W2030496502C86803240 @default.
- W2030496502 hasIssue "3" @default.
- W2030496502 hasLocation W20304965021 @default.
- W2030496502 hasOpenAccess W2030496502 @default.
- W2030496502 hasPrimaryLocation W20304965021 @default.
- W2030496502 hasRelatedWork W2002189733 @default.