Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030540147> ?p ?o ?g. }
- W2030540147 endingPage "274" @default.
- W2030540147 startingPage "255" @default.
- W2030540147 abstract "Studies of natural fluid inclusions have shown that Cu commonly occurs at higher concentrations in vapor-type inclusions than in coexisting brine inclusions, a phenomenon which has been interpreted to arise from copper partitioning into the vapor phase. In the first part of this study, we attempted to experimentally reproduce this behavior in hydrothermal experiments covering a range of P–T conditions (600–800 °C, 70–130 MPa), fluid compositions (NaCl ± KCl ± FeCl2; 0.5–6.6 wt.% S), fluid acidities (quench fluid pH ⩽0.3–10), and sulfur speciation (H2S-dominated to SO2-dominated). However, as in several other studies we did not succeed in reproducing conditions under which Cu partitions into the vapor phase. In view of recent observations that quartz-hosted fluid inclusions can diffusively loose or gain Cu after entrapment, we set out to determine if the evidence from natural fluid inclusions could be compromised. For this purpose we synthesized vapor and brine inclusions from Cu–H2O–NaCl–S fluids at 800 °C/130 MPa and re-equilibrated them in slightly different fluids at 800 °C/70 MPa, measuring some inclusions by LA-ICP-MS after each step. Vapor inclusions indeed experienced a dramatic increase in Cu from 0.3 ± 0.03 to 5.7 ± 3.3 wt.%, while brine inclusions remained largely unmodified, leading to a change in the partition coefficient DCuvap/brine from a true value (i.e., before re-equilibration) of 0.4 ± 0.05 to an apparent value of 8.3 ± 4.9. The requirements for substantial diffusional gain of Cu in fluid inclusions are a change in the pH of the surrounding fluid from ⩽1 to more neutral and the presence of S in the pre-existing fluid inclusions. These requirements are also fulfilled in nature: cooling magmatic-hydrothermal fluids experience a change from acidic to more neutral pH due to buffering along the feldspar-mica join, and natural vapor inclusions typically contain significant amounts of sulfur. A reversal experiment performed on natural, quartz-hosted fluid inclusions from the Erongo granite, Namibia, showed that this process can be reversed with the measured DCuvap/brine value of 11 ± 9.3 being modified to 0.06 ± 0.04. Thus, DCuvap/brine values >1 measured on natural fluid inclusions in quartz are likely a secondary feature caused by post-entrapment copper diffusion. Realistic DCuvap/brine values in porphyry Cu environments are between 0.11 and 0.15, and reconstructed vapor/brine mass ratios are in the order of 4–9. This suggests that the main transporting agent of Cu at the porphyry level are brines and that models based on copper into the vapor phase are incorrect." @default.
- W2030540147 created "2016-06-24" @default.
- W2030540147 creator A5039429897 @default.
- W2030540147 creator A5066572736 @default.
- W2030540147 date "2012-07-01" @default.
- W2030540147 modified "2023-10-02" @default.
- W2030540147 title "High Cu concentrations in vapor-type fluid inclusions: An artifact?" @default.
- W2030540147 cites W1674455985 @default.
- W2030540147 cites W183973874 @default.
- W2030540147 cites W1971403012 @default.
- W2030540147 cites W1976348616 @default.
- W2030540147 cites W1977339814 @default.
- W2030540147 cites W1979728009 @default.
- W2030540147 cites W1981363657 @default.
- W2030540147 cites W1989932210 @default.
- W2030540147 cites W1990006396 @default.
- W2030540147 cites W1990557642 @default.
- W2030540147 cites W1991108678 @default.
- W2030540147 cites W1994184986 @default.
- W2030540147 cites W1999301709 @default.
- W2030540147 cites W2000886616 @default.
- W2030540147 cites W2006174535 @default.
- W2030540147 cites W2008533057 @default.
- W2030540147 cites W2008575948 @default.
- W2030540147 cites W2009958649 @default.
- W2030540147 cites W2014873995 @default.
- W2030540147 cites W2015268541 @default.
- W2030540147 cites W2020454914 @default.
- W2030540147 cites W2033878695 @default.
- W2030540147 cites W2042101891 @default.
- W2030540147 cites W2042313141 @default.
- W2030540147 cites W2045731225 @default.
- W2030540147 cites W2046458643 @default.
- W2030540147 cites W2049153634 @default.
- W2030540147 cites W2050203573 @default.
- W2030540147 cites W2054791696 @default.
- W2030540147 cites W2056833090 @default.
- W2030540147 cites W2062957061 @default.
- W2030540147 cites W2063466038 @default.
- W2030540147 cites W2070096426 @default.
- W2030540147 cites W2072674126 @default.
- W2030540147 cites W2079908039 @default.
- W2030540147 cites W2087806970 @default.
- W2030540147 cites W2088522209 @default.
- W2030540147 cites W2093814974 @default.
- W2030540147 cites W2099391448 @default.
- W2030540147 cites W2103844921 @default.
- W2030540147 cites W2108353466 @default.
- W2030540147 cites W2110799222 @default.
- W2030540147 cites W2111713335 @default.
- W2030540147 cites W2112602772 @default.
- W2030540147 cites W2114504059 @default.
- W2030540147 cites W2114629701 @default.
- W2030540147 cites W2116487889 @default.
- W2030540147 cites W2123126910 @default.
- W2030540147 cites W2135566599 @default.
- W2030540147 cites W2139654255 @default.
- W2030540147 cites W2144000823 @default.
- W2030540147 cites W2145631550 @default.
- W2030540147 cites W2148592038 @default.
- W2030540147 cites W2149539527 @default.
- W2030540147 cites W2150457925 @default.
- W2030540147 cites W2153881109 @default.
- W2030540147 cites W2158091016 @default.
- W2030540147 cites W2159868744 @default.
- W2030540147 cites W2160102246 @default.
- W2030540147 cites W2165498879 @default.
- W2030540147 cites W2308108561 @default.
- W2030540147 cites W2325088857 @default.
- W2030540147 cites W2326697283 @default.
- W2030540147 cites W2981546771 @default.
- W2030540147 cites W4241200697 @default.
- W2030540147 cites W2061988506 @default.
- W2030540147 doi "https://doi.org/10.1016/j.gca.2012.04.033" @default.
- W2030540147 hasPublicationYear "2012" @default.
- W2030540147 type Work @default.
- W2030540147 sameAs 2030540147 @default.
- W2030540147 citedByCount "102" @default.
- W2030540147 countsByYear W20305401472012 @default.
- W2030540147 countsByYear W20305401472013 @default.
- W2030540147 countsByYear W20305401472014 @default.
- W2030540147 countsByYear W20305401472015 @default.
- W2030540147 countsByYear W20305401472016 @default.
- W2030540147 countsByYear W20305401472017 @default.
- W2030540147 countsByYear W20305401472018 @default.
- W2030540147 countsByYear W20305401472019 @default.
- W2030540147 countsByYear W20305401472020 @default.
- W2030540147 countsByYear W20305401472021 @default.
- W2030540147 countsByYear W20305401472022 @default.
- W2030540147 countsByYear W20305401472023 @default.
- W2030540147 crossrefType "journal-article" @default.
- W2030540147 hasAuthorship W2030540147A5039429897 @default.
- W2030540147 hasAuthorship W2030540147A5066572736 @default.
- W2030540147 hasConcept C113196181 @default.
- W2030540147 hasConcept C121332964 @default.
- W2030540147 hasConcept C127313418 @default.
- W2030540147 hasConcept C147534773 @default.
- W2030540147 hasConcept C156622251 @default.