Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030542227> ?p ?o ?g. }
- W2030542227 endingPage "565" @default.
- W2030542227 startingPage "522" @default.
- W2030542227 abstract "Abstract A realistic, efficient and robust technique for the control of amplifier flows has been investigated. Since this type of fluid system is extremely sensitive to upstream environmental noise, an accurate model capturing the influence of these perturbations is needed. A subspace identification algorithm is not only a convenient and effective way of constructing this model, it is also realistic in the sense that it is based on input and output data measurements only and does not require other information from the detailed dynamics of the fluid system. This data-based control design has been tested on an amplifier model derived from the Ginzburg–Landau equation, and no significant loss of efficiency has been observed when using the identified instead of the exact model. Even though system identification leads to a realistic control design, other issues such as state estimation, have to be addressed to achieve full control efficiency. In particular, placing a sensor too far downstream is detrimental, since it does not provide an estimate of incoming perturbations. This has been made clear and quantitative by considering the relative estimation error and, more appropriately, the concept of a visibility length, a measure of how far upstream a sensor is able to accurately estimate the flow state. It has been demonstrated that a strongly convective system is characterized by a correspondingly small visibility length. In fact, in the latter case the optimal sensor placement has been found upstream of the actuators, and only this configuration was found to yield an efficient control performance. This upstream sensor placement suggests the use of a feed-forward approach for fluid systems with strong convection. Furthermore, treating upstream sensors as inputs in the identification procedure results in a very efficient and robust control. When validated on the Ginzburg–Landau model this technique is effective, and it is comparable to the optimal upper bound, given by full-state control, when the amplifier behaviour becomes convection-dominated. These concepts and findings have been extended and verified for flow over a backward-facing step at a Reynolds number $mathit{Re}= 350$ . Environmental noise has been introduced by three independent, localized sources. A very satisfactory control of the Kelvin–Helmholtz instability has been obtained with a one-order-of-magnitude reduction in the averaged perturbation norm. The above observations have been further confirmed by examining a low-order model problem that mimics a convection-dominated flow but allows the explicit computation of control-relevant measures such as observability. This study casts doubts on the usefulness of the asymptotic notion of observability for convection-dominated flows, since such flows are governed by transient effects. Finally, it is shown that the feed-forward approach is equivalent to an optimal linear–quadratic–Gaussian control for spy sensors placed sufficiently far upstream or for sufficiently convective flows. The control design procedure presented in this paper, consisting of data-based subspace identification and feed-forward control, was found to be effective and robust. Its implementation in a real physical experiment may confidently be carried out." @default.
- W2030542227 created "2016-06-24" @default.
- W2030542227 creator A5019225643 @default.
- W2030542227 creator A5037985807 @default.
- W2030542227 creator A5074241330 @default.
- W2030542227 date "2013-05-17" @default.
- W2030542227 modified "2023-10-16" @default.
- W2030542227 title "Control of amplifier flows using subspace identification techniques" @default.
- W2030542227 cites W1579769572 @default.
- W2030542227 cites W1741033055 @default.
- W2030542227 cites W1965325240 @default.
- W2030542227 cites W1968410787 @default.
- W2030542227 cites W1971697991 @default.
- W2030542227 cites W1981196267 @default.
- W2030542227 cites W1984179642 @default.
- W2030542227 cites W1995640846 @default.
- W2030542227 cites W1998215253 @default.
- W2030542227 cites W2005136965 @default.
- W2030542227 cites W2022984480 @default.
- W2030542227 cites W2032265581 @default.
- W2030542227 cites W2034487019 @default.
- W2030542227 cites W2042945064 @default.
- W2030542227 cites W2057576183 @default.
- W2030542227 cites W2062856798 @default.
- W2030542227 cites W2085533642 @default.
- W2030542227 cites W2104102786 @default.
- W2030542227 cites W2104715238 @default.
- W2030542227 cites W2105934661 @default.
- W2030542227 cites W2106339059 @default.
- W2030542227 cites W2109869845 @default.
- W2030542227 cites W2110904690 @default.
- W2030542227 cites W2111027278 @default.
- W2030542227 cites W2118584598 @default.
- W2030542227 cites W2124280244 @default.
- W2030542227 cites W2128713754 @default.
- W2030542227 cites W2130212796 @default.
- W2030542227 cites W2130497463 @default.
- W2030542227 cites W2134673975 @default.
- W2030542227 cites W2143051062 @default.
- W2030542227 cites W2145366562 @default.
- W2030542227 cites W2145825232 @default.
- W2030542227 cites W2148087508 @default.
- W2030542227 cites W2153567226 @default.
- W2030542227 cites W2329991657 @default.
- W2030542227 cites W2330106662 @default.
- W2030542227 cites W2615836285 @default.
- W2030542227 cites W3099874806 @default.
- W2030542227 cites W3105086217 @default.
- W2030542227 cites W3167551172 @default.
- W2030542227 cites W4240691156 @default.
- W2030542227 doi "https://doi.org/10.1017/jfm.2013.194" @default.
- W2030542227 hasPublicationYear "2013" @default.
- W2030542227 type Work @default.
- W2030542227 sameAs 2030542227 @default.
- W2030542227 citedByCount "29" @default.
- W2030542227 countsByYear W20305422272013 @default.
- W2030542227 countsByYear W20305422272014 @default.
- W2030542227 countsByYear W20305422272015 @default.
- W2030542227 countsByYear W20305422272016 @default.
- W2030542227 countsByYear W20305422272017 @default.
- W2030542227 countsByYear W20305422272018 @default.
- W2030542227 countsByYear W20305422272019 @default.
- W2030542227 countsByYear W20305422272021 @default.
- W2030542227 countsByYear W20305422272022 @default.
- W2030542227 countsByYear W20305422272023 @default.
- W2030542227 crossrefType "journal-article" @default.
- W2030542227 hasAuthorship W2030542227A5019225643 @default.
- W2030542227 hasAuthorship W2030542227A5037985807 @default.
- W2030542227 hasAuthorship W2030542227A5074241330 @default.
- W2030542227 hasBestOaLocation W20305422273 @default.
- W2030542227 hasConcept C116834253 @default.
- W2030542227 hasConcept C119247159 @default.
- W2030542227 hasConcept C120665830 @default.
- W2030542227 hasConcept C121332964 @default.
- W2030542227 hasConcept C123403432 @default.
- W2030542227 hasConcept C154945302 @default.
- W2030542227 hasConcept C172707124 @default.
- W2030542227 hasConcept C186766456 @default.
- W2030542227 hasConcept C191172861 @default.
- W2030542227 hasConcept C194257627 @default.
- W2030542227 hasConcept C2775924081 @default.
- W2030542227 hasConcept C2776257435 @default.
- W2030542227 hasConcept C2780009758 @default.
- W2030542227 hasConcept C32834561 @default.
- W2030542227 hasConcept C41008148 @default.
- W2030542227 hasConcept C47446073 @default.
- W2030542227 hasConcept C59822182 @default.
- W2030542227 hasConcept C76155785 @default.
- W2030542227 hasConcept C77088390 @default.
- W2030542227 hasConcept C86803240 @default.
- W2030542227 hasConceptScore W2030542227C116834253 @default.
- W2030542227 hasConceptScore W2030542227C119247159 @default.
- W2030542227 hasConceptScore W2030542227C120665830 @default.
- W2030542227 hasConceptScore W2030542227C121332964 @default.
- W2030542227 hasConceptScore W2030542227C123403432 @default.
- W2030542227 hasConceptScore W2030542227C154945302 @default.
- W2030542227 hasConceptScore W2030542227C172707124 @default.
- W2030542227 hasConceptScore W2030542227C186766456 @default.