Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030619216> ?p ?o ?g. }
- W2030619216 endingPage "384" @default.
- W2030619216 startingPage "384" @default.
- W2030619216 abstract "Some biological sequences contain subsequences of unusual composition; e.g. some proteins contain DNA binding domains, transmembrane regions and charged regions, and some DNA sequences contain repeats. The linear-time Ruzzo-Tompa (RT) algorithm finds subsequences of unusual composition, using a sequence of scores as input and the corresponding 'maximal segments' as output. In principle, permitting gaps in the output subsequences could improve sensitivity. Here, the input of the RT algorithm is generalised to a finite, totally ordered, weighted graph, so the algorithm locates paths of maximal weight through increasing but not necessarily adjacent vertices. By permitting the penalised deletion of unfavourable letters, the generalisation therefore includes gaps. The program RepWords, which finds inexact simple repeats in DNA, exemplifies the general concepts by out-performing a similar extant, ad hoc tool. With minimal programming effort, the generalised Ruzzo-Tompa algorithm could improve the performance of many programs for finding biological subsequences of unusual composition." @default.
- W2030619216 created "2016-06-24" @default.
- W2030619216 creator A5039386346 @default.
- W2030619216 creator A5077248996 @default.
- W2030619216 creator A5079340857 @default.
- W2030619216 date "2014-01-01" @default.
- W2030619216 modified "2023-09-24" @default.
- W2030619216 title "Searching for repeats, as an example of using the generalised Ruzzo-Tompa algorithm to find optimal subsequences with gaps" @default.
- W2030619216 cites W1509502258 @default.
- W2030619216 cites W1513332069 @default.
- W2030619216 cites W1965998064 @default.
- W2030619216 cites W1972492564 @default.
- W2030619216 cites W1973862547 @default.
- W2030619216 cites W1975304761 @default.
- W2030619216 cites W1985423799 @default.
- W2030619216 cites W1989693223 @default.
- W2030619216 cites W1998883110 @default.
- W2030619216 cites W2008610661 @default.
- W2030619216 cites W2015509653 @default.
- W2030619216 cites W2022438258 @default.
- W2030619216 cites W2031084895 @default.
- W2030619216 cites W2042086471 @default.
- W2030619216 cites W2047789345 @default.
- W2030619216 cites W2055043387 @default.
- W2030619216 cites W2055050002 @default.
- W2030619216 cites W2057521972 @default.
- W2030619216 cites W2068448872 @default.
- W2030619216 cites W2071501400 @default.
- W2030619216 cites W2073449490 @default.
- W2030619216 cites W2074217206 @default.
- W2030619216 cites W2084787613 @default.
- W2030619216 cites W2085668020 @default.
- W2030619216 cites W2087064593 @default.
- W2030619216 cites W2087817903 @default.
- W2030619216 cites W2094519647 @default.
- W2030619216 cites W2106263380 @default.
- W2030619216 cites W2112814753 @default.
- W2030619216 cites W2113565021 @default.
- W2030619216 cites W2124091818 @default.
- W2030619216 cites W2128663622 @default.
- W2030619216 cites W2130284512 @default.
- W2030619216 cites W2138000345 @default.
- W2030619216 cites W2141326336 @default.
- W2030619216 cites W2142204199 @default.
- W2030619216 cites W2142613131 @default.
- W2030619216 cites W2158714788 @default.
- W2030619216 cites W2164498514 @default.
- W2030619216 cites W2168909179 @default.
- W2030619216 cites W2166843037 @default.
- W2030619216 doi "https://doi.org/10.1504/ijbra.2014.062991" @default.
- W2030619216 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4135518" @default.
- W2030619216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24989859" @default.
- W2030619216 hasPublicationYear "2014" @default.
- W2030619216 type Work @default.
- W2030619216 sameAs 2030619216 @default.
- W2030619216 citedByCount "2" @default.
- W2030619216 countsByYear W20306192162016 @default.
- W2030619216 countsByYear W20306192162022 @default.
- W2030619216 crossrefType "journal-article" @default.
- W2030619216 hasAuthorship W2030619216A5039386346 @default.
- W2030619216 hasAuthorship W2030619216A5077248996 @default.
- W2030619216 hasAuthorship W2030619216A5079340857 @default.
- W2030619216 hasBestOaLocation W20306192162 @default.
- W2030619216 hasConcept C111472728 @default.
- W2030619216 hasConcept C11413529 @default.
- W2030619216 hasConcept C114614502 @default.
- W2030619216 hasConcept C132525143 @default.
- W2030619216 hasConcept C138885662 @default.
- W2030619216 hasConcept C178300618 @default.
- W2030619216 hasConcept C2524010 @default.
- W2030619216 hasConcept C2778112365 @default.
- W2030619216 hasConcept C2780586882 @default.
- W2030619216 hasConcept C2780861071 @default.
- W2030619216 hasConcept C33923547 @default.
- W2030619216 hasConcept C37404715 @default.
- W2030619216 hasConcept C40231798 @default.
- W2030619216 hasConcept C41008148 @default.
- W2030619216 hasConcept C41895202 @default.
- W2030619216 hasConcept C54355233 @default.
- W2030619216 hasConcept C78458016 @default.
- W2030619216 hasConcept C86803240 @default.
- W2030619216 hasConceptScore W2030619216C111472728 @default.
- W2030619216 hasConceptScore W2030619216C11413529 @default.
- W2030619216 hasConceptScore W2030619216C114614502 @default.
- W2030619216 hasConceptScore W2030619216C132525143 @default.
- W2030619216 hasConceptScore W2030619216C138885662 @default.
- W2030619216 hasConceptScore W2030619216C178300618 @default.
- W2030619216 hasConceptScore W2030619216C2524010 @default.
- W2030619216 hasConceptScore W2030619216C2778112365 @default.
- W2030619216 hasConceptScore W2030619216C2780586882 @default.
- W2030619216 hasConceptScore W2030619216C2780861071 @default.
- W2030619216 hasConceptScore W2030619216C33923547 @default.
- W2030619216 hasConceptScore W2030619216C37404715 @default.
- W2030619216 hasConceptScore W2030619216C40231798 @default.
- W2030619216 hasConceptScore W2030619216C41008148 @default.
- W2030619216 hasConceptScore W2030619216C41895202 @default.
- W2030619216 hasConceptScore W2030619216C54355233 @default.
- W2030619216 hasConceptScore W2030619216C78458016 @default.