Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030628077> ?p ?o ?g. }
- W2030628077 abstract "Abstract Background Epistasis is recognized ubiquitous in the genetic architecture of complex traits such as disease susceptibility. Experimental studies in model organisms have revealed extensive evidence of biological interactions among genes. Meanwhile, statistical and computational studies in human populations have suggested non-additive effects of genetic variation on complex traits. Although these studies form a baseline for understanding the genetic architecture of complex traits, to date they have only considered interactions among a small number of genetic variants. Our goal here is to use network science to determine the extent to which non-additive interactions exist beyond small subsets of genetic variants. We infer statistical epistasis networks to characterize the global space of pairwise interactions among approximately 1500 Single Nucleotide Polymorphisms (SNPs) spanning nearly 500 cancer susceptibility genes in a large population-based study of bladder cancer. Results The statistical epistasis network was built by linking pairs of SNPs if their pairwise interactions were stronger than a systematically derived threshold. Its topology clearly differentiated this real-data network from networks obtained from permutations of the same data under the null hypothesis that no association exists between genotype and phenotype. The network had a significantly higher number of hub SNPs and, interestingly, these hub SNPs were not necessarily with high main effects. The network had a largest connected component of 39 SNPs that was absent in any other permuted-data networks. In addition, the vertex degrees of this network were distinctively found following an approximate power-law distribution and its topology appeared scale-free. Conclusions In contrast to many existing techniques focusing on high main-effect SNPs or models of several interacting SNPs, our network approach characterized a global picture of gene-gene interactions in a population-based genetic data. The network was built using pairwise interactions, and its distinctive network topology and large connected components indicated joint effects in a large set of SNPs. Our observations suggested that this particular statistical epistasis network captured important features of the genetic architecture of bladder cancer that have not been described previously." @default.
- W2030628077 created "2016-06-24" @default.
- W2030628077 creator A5009454568 @default.
- W2030628077 creator A5060582046 @default.
- W2030628077 creator A5062649421 @default.
- W2030628077 creator A5070068281 @default.
- W2030628077 creator A5071823422 @default.
- W2030628077 creator A5075046931 @default.
- W2030628077 date "2011-09-12" @default.
- W2030628077 modified "2023-10-07" @default.
- W2030628077 title "Characterizing genetic interactions in human disease association studies using statistical epistasis networks" @default.
- W2030628077 cites W1898792859 @default.
- W2030628077 cites W1964031786 @default.
- W2030628077 cites W1964525882 @default.
- W2030628077 cites W1970894083 @default.
- W2030628077 cites W1973141736 @default.
- W2030628077 cites W1987236914 @default.
- W2030628077 cites W1989531990 @default.
- W2030628077 cites W1990139289 @default.
- W2030628077 cites W2007669896 @default.
- W2030628077 cites W2016755304 @default.
- W2030628077 cites W2018045523 @default.
- W2030628077 cites W2018934112 @default.
- W2030628077 cites W2019024533 @default.
- W2030628077 cites W2023116290 @default.
- W2030628077 cites W2025471227 @default.
- W2030628077 cites W2052182252 @default.
- W2030628077 cites W2058812329 @default.
- W2030628077 cites W2063575312 @default.
- W2030628077 cites W2066669827 @default.
- W2030628077 cites W2076220518 @default.
- W2030628077 cites W2083610541 @default.
- W2030628077 cites W2094189284 @default.
- W2030628077 cites W2096525273 @default.
- W2030628077 cites W2098509901 @default.
- W2030628077 cites W2111904939 @default.
- W2030628077 cites W2117446594 @default.
- W2030628077 cites W2125779167 @default.
- W2030628077 cites W2125858955 @default.
- W2030628077 cites W2130790725 @default.
- W2030628077 cites W2130856032 @default.
- W2030628077 cites W2131878646 @default.
- W2030628077 cites W2135687826 @default.
- W2030628077 cites W2138020005 @default.
- W2030628077 cites W2138629620 @default.
- W2030628077 cites W2142927241 @default.
- W2030628077 cites W2152905639 @default.
- W2030628077 cites W2154572047 @default.
- W2030628077 cites W2163480486 @default.
- W2030628077 cites W2164727176 @default.
- W2030628077 cites W2168909179 @default.
- W2030628077 cites W2170133641 @default.
- W2030628077 cites W2170376409 @default.
- W2030628077 cites W2950627632 @default.
- W2030628077 cites W3103786587 @default.
- W2030628077 cites W4238452917 @default.
- W2030628077 cites W4250297812 @default.
- W2030628077 doi "https://doi.org/10.1186/1471-2105-12-364" @default.
- W2030628077 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3215301" @default.
- W2030628077 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21910885" @default.
- W2030628077 hasPublicationYear "2011" @default.
- W2030628077 type Work @default.
- W2030628077 sameAs 2030628077 @default.
- W2030628077 citedByCount "110" @default.
- W2030628077 countsByYear W20306280772012 @default.
- W2030628077 countsByYear W20306280772013 @default.
- W2030628077 countsByYear W20306280772014 @default.
- W2030628077 countsByYear W20306280772015 @default.
- W2030628077 countsByYear W20306280772016 @default.
- W2030628077 countsByYear W20306280772017 @default.
- W2030628077 countsByYear W20306280772018 @default.
- W2030628077 countsByYear W20306280772019 @default.
- W2030628077 countsByYear W20306280772020 @default.
- W2030628077 countsByYear W20306280772021 @default.
- W2030628077 countsByYear W20306280772022 @default.
- W2030628077 countsByYear W20306280772023 @default.
- W2030628077 crossrefType "journal-article" @default.
- W2030628077 hasAuthorship W2030628077A5009454568 @default.
- W2030628077 hasAuthorship W2030628077A5060582046 @default.
- W2030628077 hasAuthorship W2030628077A5062649421 @default.
- W2030628077 hasAuthorship W2030628077A5070068281 @default.
- W2030628077 hasAuthorship W2030628077A5071823422 @default.
- W2030628077 hasAuthorship W2030628077A5075046931 @default.
- W2030628077 hasBestOaLocation W20306280771 @default.
- W2030628077 hasConcept C104317684 @default.
- W2030628077 hasConcept C105795698 @default.
- W2030628077 hasConcept C135763542 @default.
- W2030628077 hasConcept C144024400 @default.
- W2030628077 hasConcept C149923435 @default.
- W2030628077 hasConcept C153209595 @default.
- W2030628077 hasConcept C184898388 @default.
- W2030628077 hasConcept C186413461 @default.
- W2030628077 hasConcept C28225019 @default.
- W2030628077 hasConcept C2908647359 @default.
- W2030628077 hasConcept C33923547 @default.
- W2030628077 hasConcept C54355233 @default.
- W2030628077 hasConcept C61727976 @default.
- W2030628077 hasConcept C70721500 @default.
- W2030628077 hasConcept C81941488 @default.
- W2030628077 hasConcept C86803240 @default.