Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030689323> ?p ?o ?g. }
- W2030689323 endingPage "136" @default.
- W2030689323 startingPage "128" @default.
- W2030689323 abstract "Market segmentation comprises a variety of measurement methodologies that are used to support management, marketing and promotional policies in tourism destinations. This study applies ClustOfVar, a relatively recent algorithm for cluster analysis from mixed variables. The technique finds groups of variables by using a homogeneity criterion based on the sum of correlation ratios for qualitative variables, and squared correlations for quantitative variables. Then principal components from each cluster of variables are extracted in order to segment cruise passengers. CART analysis is finally used for the sake of finding the variables that drove the formation of the clusters. All the analysis is based on an official survey of tourists who disembarked in Uruguayan ports. The analysis identified five clusters, both for variables and cruise passengers. Findings highlight the importance of the enjoyment of the contact with local people for the economic impact, as well as the important role of age and gender related variables. Managerial implications are also discussed." @default.
- W2030689323 created "2016-06-24" @default.
- W2030689323 creator A5010827220 @default.
- W2030689323 creator A5013411272 @default.
- W2030689323 creator A5039618682 @default.
- W2030689323 creator A5044136213 @default.
- W2030689323 date "2014-11-01" @default.
- W2030689323 modified "2023-09-26" @default.
- W2030689323 title "ClustOfVar and the segmentation of cruise passengers from mixed data: Some managerial implications" @default.
- W2030689323 cites W1552922844 @default.
- W2030689323 cites W1853119737 @default.
- W2030689323 cites W1930145896 @default.
- W2030689323 cites W1975743030 @default.
- W2030689323 cites W1978204941 @default.
- W2030689323 cites W1987099084 @default.
- W2030689323 cites W2012951642 @default.
- W2030689323 cites W2016381774 @default.
- W2030689323 cites W2016544456 @default.
- W2030689323 cites W2020032534 @default.
- W2030689323 cites W2033613419 @default.
- W2030689323 cites W2040123690 @default.
- W2030689323 cites W2042506593 @default.
- W2030689323 cites W2047410430 @default.
- W2030689323 cites W2054196297 @default.
- W2030689323 cites W2054659318 @default.
- W2030689323 cites W2068143018 @default.
- W2030689323 cites W2075292176 @default.
- W2030689323 cites W2090453565 @default.
- W2030689323 cites W2108395200 @default.
- W2030689323 cites W2112235463 @default.
- W2030689323 cites W2133896831 @default.
- W2030689323 cites W2137501473 @default.
- W2030689323 cites W2148061495 @default.
- W2030689323 cites W2150747194 @default.
- W2030689323 cites W2154266223 @default.
- W2030689323 cites W2155851804 @default.
- W2030689323 cites W2165240856 @default.
- W2030689323 cites W2169099305 @default.
- W2030689323 cites W2171551269 @default.
- W2030689323 cites W3124170523 @default.
- W2030689323 cites W4235169531 @default.
- W2030689323 doi "https://doi.org/10.1016/j.knosys.2014.06.016" @default.
- W2030689323 hasPublicationYear "2014" @default.
- W2030689323 type Work @default.
- W2030689323 sameAs 2030689323 @default.
- W2030689323 citedByCount "12" @default.
- W2030689323 countsByYear W20306893232015 @default.
- W2030689323 countsByYear W20306893232016 @default.
- W2030689323 countsByYear W20306893232017 @default.
- W2030689323 countsByYear W20306893232018 @default.
- W2030689323 countsByYear W20306893232019 @default.
- W2030689323 countsByYear W20306893232021 @default.
- W2030689323 countsByYear W20306893232023 @default.
- W2030689323 crossrefType "journal-article" @default.
- W2030689323 hasAuthorship W2030689323A5010827220 @default.
- W2030689323 hasAuthorship W2030689323A5013411272 @default.
- W2030689323 hasAuthorship W2030689323A5039618682 @default.
- W2030689323 hasAuthorship W2030689323A5044136213 @default.
- W2030689323 hasConcept C111368507 @default.
- W2030689323 hasConcept C119857082 @default.
- W2030689323 hasConcept C125308379 @default.
- W2030689323 hasConcept C127313418 @default.
- W2030689323 hasConcept C136197465 @default.
- W2030689323 hasConcept C142259097 @default.
- W2030689323 hasConcept C144133560 @default.
- W2030689323 hasConcept C149782125 @default.
- W2030689323 hasConcept C154945302 @default.
- W2030689323 hasConcept C162853370 @default.
- W2030689323 hasConcept C164866538 @default.
- W2030689323 hasConcept C166957645 @default.
- W2030689323 hasConcept C18918823 @default.
- W2030689323 hasConcept C199360897 @default.
- W2030689323 hasConcept C205649164 @default.
- W2030689323 hasConcept C27574286 @default.
- W2030689323 hasConcept C2776687071 @default.
- W2030689323 hasConcept C2778821358 @default.
- W2030689323 hasConcept C33923547 @default.
- W2030689323 hasConcept C41008148 @default.
- W2030689323 hasConcept C42475967 @default.
- W2030689323 hasConcept C89600930 @default.
- W2030689323 hasConceptScore W2030689323C111368507 @default.
- W2030689323 hasConceptScore W2030689323C119857082 @default.
- W2030689323 hasConceptScore W2030689323C125308379 @default.
- W2030689323 hasConceptScore W2030689323C127313418 @default.
- W2030689323 hasConceptScore W2030689323C136197465 @default.
- W2030689323 hasConceptScore W2030689323C142259097 @default.
- W2030689323 hasConceptScore W2030689323C144133560 @default.
- W2030689323 hasConceptScore W2030689323C149782125 @default.
- W2030689323 hasConceptScore W2030689323C154945302 @default.
- W2030689323 hasConceptScore W2030689323C162853370 @default.
- W2030689323 hasConceptScore W2030689323C164866538 @default.
- W2030689323 hasConceptScore W2030689323C166957645 @default.
- W2030689323 hasConceptScore W2030689323C18918823 @default.
- W2030689323 hasConceptScore W2030689323C199360897 @default.
- W2030689323 hasConceptScore W2030689323C205649164 @default.
- W2030689323 hasConceptScore W2030689323C27574286 @default.
- W2030689323 hasConceptScore W2030689323C2776687071 @default.
- W2030689323 hasConceptScore W2030689323C2778821358 @default.