Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030690158> ?p ?o ?g. }
- W2030690158 endingPage "18019" @default.
- W2030690158 startingPage "18014" @default.
- W2030690158 abstract "Skeletal representations of shape have attracted enormous interest ever since their introduction by Blum [Blum H (1973) J Theor Biol 38:205-287], because of their potential to provide a compact, but meaningful, shape representation, suitable for both neural modeling and computational applications. But effective computation of the shape skeleton remains a notorious unsolved problem; existing approaches are extremely sensitive to noise and give counterintuitive results with simple shapes. In conventional approaches, the skeleton is defined by a geometric construction and computed by a deterministic procedure. We introduce a Bayesian probabilistic approach, in which a shape is assumed to have grown from a skeleton by a stochastic generative process. Bayesian estimation is used to identify the skeleton most likely to have produced the shape, i.e., that best explains it, called the maximum a posteriori skeleton. Even with natural shapes with substantial contour noise, this approach provides a robust skeletal representation whose branches correspond to the natural parts of the shape." @default.
- W2030690158 created "2016-06-24" @default.
- W2030690158 creator A5002009029 @default.
- W2030690158 creator A5038343520 @default.
- W2030690158 date "2006-11-21" @default.
- W2030690158 modified "2023-10-11" @default.
- W2030690158 title "Bayesian estimation of the shape skeleton" @default.
- W2030690158 cites W1501418839 @default.
- W2030690158 cites W1553943608 @default.
- W2030690158 cites W1562206072 @default.
- W2030690158 cites W1577824565 @default.
- W2030690158 cites W1964292075 @default.
- W2030690158 cites W2003984303 @default.
- W2030690158 cites W2004686460 @default.
- W2030690158 cites W2005168270 @default.
- W2030690158 cites W2023313243 @default.
- W2030690158 cites W2029221251 @default.
- W2030690158 cites W2032238293 @default.
- W2030690158 cites W2049378174 @default.
- W2030690158 cites W2060338596 @default.
- W2030690158 cites W2076010473 @default.
- W2030690158 cites W2077246452 @default.
- W2030690158 cites W2081519360 @default.
- W2030690158 cites W2084528670 @default.
- W2030690158 cites W2088114053 @default.
- W2030690158 cites W2100900426 @default.
- W2030690158 cites W2122249653 @default.
- W2030690158 cites W2122741244 @default.
- W2030690158 cites W2127627615 @default.
- W2030690158 cites W2129050860 @default.
- W2030690158 cites W2137105523 @default.
- W2030690158 cites W2147175193 @default.
- W2030690158 cites W2152229373 @default.
- W2030690158 cites W2156406284 @default.
- W2030690158 cites W2160386999 @default.
- W2030690158 cites W2161270253 @default.
- W2030690158 cites W2162002414 @default.
- W2030690158 cites W2167059107 @default.
- W2030690158 cites W2197363001 @default.
- W2030690158 cites W4255974781 @default.
- W2030690158 cites W96629785 @default.
- W2030690158 doi "https://doi.org/10.1073/pnas.0608811103" @default.
- W2030690158 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1635976" @default.
- W2030690158 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17101989" @default.
- W2030690158 hasPublicationYear "2006" @default.
- W2030690158 type Work @default.
- W2030690158 sameAs 2030690158 @default.
- W2030690158 citedByCount "155" @default.
- W2030690158 countsByYear W20306901582012 @default.
- W2030690158 countsByYear W20306901582013 @default.
- W2030690158 countsByYear W20306901582014 @default.
- W2030690158 countsByYear W20306901582015 @default.
- W2030690158 countsByYear W20306901582016 @default.
- W2030690158 countsByYear W20306901582017 @default.
- W2030690158 countsByYear W20306901582018 @default.
- W2030690158 countsByYear W20306901582019 @default.
- W2030690158 countsByYear W20306901582020 @default.
- W2030690158 countsByYear W20306901582021 @default.
- W2030690158 countsByYear W20306901582022 @default.
- W2030690158 countsByYear W20306901582023 @default.
- W2030690158 crossrefType "journal-article" @default.
- W2030690158 hasAuthorship W2030690158A5002009029 @default.
- W2030690158 hasAuthorship W2030690158A5038343520 @default.
- W2030690158 hasBestOaLocation W20306901582 @default.
- W2030690158 hasConcept C105795698 @default.
- W2030690158 hasConcept C107673813 @default.
- W2030690158 hasConcept C111472728 @default.
- W2030690158 hasConcept C112604564 @default.
- W2030690158 hasConcept C112785775 @default.
- W2030690158 hasConcept C11413529 @default.
- W2030690158 hasConcept C115961682 @default.
- W2030690158 hasConcept C129641003 @default.
- W2030690158 hasConcept C138885662 @default.
- W2030690158 hasConcept C153180895 @default.
- W2030690158 hasConcept C154945302 @default.
- W2030690158 hasConcept C167966045 @default.
- W2030690158 hasConcept C17744445 @default.
- W2030690158 hasConcept C18969341 @default.
- W2030690158 hasConcept C199360897 @default.
- W2030690158 hasConcept C199539241 @default.
- W2030690158 hasConcept C2776359362 @default.
- W2030690158 hasConcept C2780586882 @default.
- W2030690158 hasConcept C33923547 @default.
- W2030690158 hasConcept C39890363 @default.
- W2030690158 hasConcept C41008148 @default.
- W2030690158 hasConcept C45374587 @default.
- W2030690158 hasConcept C49781872 @default.
- W2030690158 hasConcept C75553542 @default.
- W2030690158 hasConcept C89600930 @default.
- W2030690158 hasConcept C94625758 @default.
- W2030690158 hasConcept C97686452 @default.
- W2030690158 hasConcept C9810830 @default.
- W2030690158 hasConcept C99498987 @default.
- W2030690158 hasConceptScore W2030690158C105795698 @default.
- W2030690158 hasConceptScore W2030690158C107673813 @default.
- W2030690158 hasConceptScore W2030690158C111472728 @default.
- W2030690158 hasConceptScore W2030690158C112604564 @default.
- W2030690158 hasConceptScore W2030690158C112785775 @default.