Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030752473> ?p ?o ?g. }
- W2030752473 endingPage "2688" @default.
- W2030752473 startingPage "2672" @default.
- W2030752473 abstract "Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 μm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88% occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary variables, demonstrated 93.2% correct classifications of DD and NDD. Evaluation of the combined CART–logistic regression scheme in an adjacent geographical region (Gush Dan) demonstrated good results. Using SRS aerosol products for DD and NDD, identification may enable us to distinguish between health, ecological, and environmental effects that result from exposure to these distinct particle populations." @default.
- W2030752473 created "2016-06-24" @default.
- W2030752473 creator A5019391961 @default.
- W2030752473 creator A5029688424 @default.
- W2030752473 creator A5047290029 @default.
- W2030752473 creator A5049402923 @default.
- W2030752473 creator A5070226314 @default.
- W2030752473 date "2012-12-18" @default.
- W2030752473 modified "2023-09-23" @default.
- W2030752473 title "Classification of dust days by satellite remotely sensed aerosol products" @default.
- W2030752473 cites W1968078563 @default.
- W2030752473 cites W1968114652 @default.
- W2030752473 cites W1968335308 @default.
- W2030752473 cites W1968907431 @default.
- W2030752473 cites W1975546231 @default.
- W2030752473 cites W1978251005 @default.
- W2030752473 cites W1979015109 @default.
- W2030752473 cites W1980883936 @default.
- W2030752473 cites W1991656425 @default.
- W2030752473 cites W1997071220 @default.
- W2030752473 cites W2022022267 @default.
- W2030752473 cites W2022581615 @default.
- W2030752473 cites W2022846988 @default.
- W2030752473 cites W2023545265 @default.
- W2030752473 cites W2023843396 @default.
- W2030752473 cites W2036107949 @default.
- W2030752473 cites W2045800824 @default.
- W2030752473 cites W2047877107 @default.
- W2030752473 cites W2048801813 @default.
- W2030752473 cites W2064512920 @default.
- W2030752473 cites W2065623290 @default.
- W2030752473 cites W2068117688 @default.
- W2030752473 cites W2068635809 @default.
- W2030752473 cites W2069977802 @default.
- W2030752473 cites W2070245019 @default.
- W2030752473 cites W2071522611 @default.
- W2030752473 cites W2079055127 @default.
- W2030752473 cites W2085260550 @default.
- W2030752473 cites W2088841717 @default.
- W2030752473 cites W2092953734 @default.
- W2030752473 cites W2100033703 @default.
- W2030752473 cites W2101156737 @default.
- W2030752473 cites W2103843293 @default.
- W2030752473 cites W2104098396 @default.
- W2030752473 cites W2104960492 @default.
- W2030752473 cites W2123768945 @default.
- W2030752473 cites W2132797698 @default.
- W2030752473 cites W2150025255 @default.
- W2030752473 cites W2151133928 @default.
- W2030752473 cites W2155653793 @default.
- W2030752473 cites W2157185179 @default.
- W2030752473 cites W2158698691 @default.
- W2030752473 cites W2160707723 @default.
- W2030752473 cites W2161669929 @default.
- W2030752473 cites W2164482050 @default.
- W2030752473 cites W4229907525 @default.
- W2030752473 cites W4239064002 @default.
- W2030752473 cites W4255082916 @default.
- W2030752473 doi "https://doi.org/10.1080/01431161.2012.748991" @default.
- W2030752473 hasPublicationYear "2012" @default.
- W2030752473 type Work @default.
- W2030752473 sameAs 2030752473 @default.
- W2030752473 citedByCount "24" @default.
- W2030752473 countsByYear W20307524732013 @default.
- W2030752473 countsByYear W20307524732014 @default.
- W2030752473 countsByYear W20307524732015 @default.
- W2030752473 countsByYear W20307524732016 @default.
- W2030752473 countsByYear W20307524732017 @default.
- W2030752473 countsByYear W20307524732018 @default.
- W2030752473 countsByYear W20307524732019 @default.
- W2030752473 countsByYear W20307524732020 @default.
- W2030752473 countsByYear W20307524732021 @default.
- W2030752473 countsByYear W20307524732022 @default.
- W2030752473 countsByYear W20307524732023 @default.
- W2030752473 crossrefType "journal-article" @default.
- W2030752473 hasAuthorship W2030752473A5019391961 @default.
- W2030752473 hasAuthorship W2030752473A5029688424 @default.
- W2030752473 hasAuthorship W2030752473A5047290029 @default.
- W2030752473 hasAuthorship W2030752473A5049402923 @default.
- W2030752473 hasAuthorship W2030752473A5070226314 @default.
- W2030752473 hasBestOaLocation W20307524732 @default.
- W2030752473 hasConcept C108597893 @default.
- W2030752473 hasConcept C120665830 @default.
- W2030752473 hasConcept C121332964 @default.
- W2030752473 hasConcept C127313418 @default.
- W2030752473 hasConcept C127413603 @default.
- W2030752473 hasConcept C130066347 @default.
- W2030752473 hasConcept C146978453 @default.
- W2030752473 hasConcept C153294291 @default.
- W2030752473 hasConcept C160529264 @default.
- W2030752473 hasConcept C178790620 @default.
- W2030752473 hasConcept C185592680 @default.
- W2030752473 hasConcept C19269812 @default.
- W2030752473 hasConcept C205649164 @default.
- W2030752473 hasConcept C24245907 @default.
- W2030752473 hasConcept C2777007095 @default.
- W2030752473 hasConcept C2779345167 @default.
- W2030752473 hasConcept C39432304 @default.