Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030756316> ?p ?o ?g. }
- W2030756316 endingPage "1401" @default.
- W2030756316 startingPage "1384" @default.
- W2030756316 abstract "This work provides a systematic comparison of vibrational CD (VCD) and electronic CD (ECD) methods for spectral prediction of secondary structure. The VCD and ECD data are simplified to a small set of spectral parameters using the principal component method of factor analysis (PC/FA). Regression fits of these parameters are made to the X-ray-determined fractional components (FC) of secondary structure. Predictive capability is determined by computing structures for proteins sequentially left out of the regression. All possible combinations of PC/FA spectral parameters (coefficients) were used to form a full set of restricted multiple regressions with the FC values, both independently for each spectral data set as well as for the two VCD sets and all the data grouped together. The complete search over all possible combinations of spectral parameters for different types of spectral data is a new feature of this study, and the focus on prediction is the strength of this approach. The PC/FA method was found to be stable in detail to expansion of the training set. Coupling amide II to amide I' parameters reduced the standard deviations of the VCD regression relationships, and combining VCD and ECD data led to the best fits. Prediction results had a minimum error when dependent on relatively few spectral coefficients. Such a limited dependence on spectral variation is the key finding of this work, which has ramifications for previous studies as well as suggests future directions for spectral analysis of structure. The best ECD prediction for helix and sheet uses only one parameter, the coefficient of the first subspectrum. With VCD, the best predictions sample coefficients of both the amide I' and II bands, but error is optimized using only a few coefficients. In this respect, ECD is more accurate than VCD for α-helix, and the combined VCD (amide I'+II) predicts the β-sheet component better than does ECD. Combining VCD and ECD data sets yields exceptionally good predictions by utilizing the strengths of each. However, the residual error, its distribution, and, most importantly, the lack of dependence of the method on many of the significant components derived from the spectra leads to the conclusion that the heterogeneity of protein structure is a fundamental limitation to the use of such spectral analysis methods. The underutilization of these data for prediction of secondary structure suggests spectral data could predict a more detailed descriptor." @default.
- W2030756316 created "2016-06-24" @default.
- W2030756316 creator A5000817440 @default.
- W2030756316 creator A5004857117 @default.
- W2030756316 creator A5008171752 @default.
- W2030756316 creator A5024598524 @default.
- W2030756316 creator A5040526346 @default.
- W2030756316 creator A5084003807 @default.
- W2030756316 date "1995-07-01" @default.
- W2030756316 modified "2023-10-16" @default.
- W2030756316 title "Comparison of and limits of accuracy for statistical analyses of vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure" @default.
- W2030756316 cites W1588439587 @default.
- W2030756316 cites W1593567129 @default.
- W2030756316 cites W1965416930 @default.
- W2030756316 cites W1969151412 @default.
- W2030756316 cites W1973210189 @default.
- W2030756316 cites W1981147325 @default.
- W2030756316 cites W1983787525 @default.
- W2030756316 cites W1985013648 @default.
- W2030756316 cites W1989447327 @default.
- W2030756316 cites W1995062321 @default.
- W2030756316 cites W2004185660 @default.
- W2030756316 cites W2004242436 @default.
- W2030756316 cites W2006791133 @default.
- W2030756316 cites W2008708467 @default.
- W2030756316 cites W2011759191 @default.
- W2030756316 cites W2014550271 @default.
- W2030756316 cites W2031348819 @default.
- W2030756316 cites W2032370708 @default.
- W2030756316 cites W2036701050 @default.
- W2030756316 cites W2037692676 @default.
- W2030756316 cites W2038486778 @default.
- W2030756316 cites W2043360320 @default.
- W2030756316 cites W2045494326 @default.
- W2030756316 cites W2055307767 @default.
- W2030756316 cites W2056816046 @default.
- W2030756316 cites W2057279424 @default.
- W2030756316 cites W2057357156 @default.
- W2030756316 cites W2057609017 @default.
- W2030756316 cites W2059634416 @default.
- W2030756316 cites W2060655217 @default.
- W2030756316 cites W2062102053 @default.
- W2030756316 cites W2062228103 @default.
- W2030756316 cites W2068984682 @default.
- W2030756316 cites W2071750984 @default.
- W2030756316 cites W2071758457 @default.
- W2030756316 cites W2073090647 @default.
- W2030756316 cites W2075668341 @default.
- W2030756316 cites W2079564988 @default.
- W2030756316 cites W2082389960 @default.
- W2030756316 cites W2083563479 @default.
- W2030756316 cites W2084500867 @default.
- W2030756316 cites W2085365687 @default.
- W2030756316 cites W2094077114 @default.
- W2030756316 cites W2095373137 @default.
- W2030756316 cites W2110989692 @default.
- W2030756316 cites W2122393563 @default.
- W2030756316 cites W2141353992 @default.
- W2030756316 cites W2160217048 @default.
- W2030756316 cites W2162957392 @default.
- W2030756316 cites W2163895770 @default.
- W2030756316 cites W2173534031 @default.
- W2030756316 cites W2203038906 @default.
- W2030756316 cites W2486711980 @default.
- W2030756316 cites W2620717122 @default.
- W2030756316 cites W4236349689 @default.
- W2030756316 doi "https://doi.org/10.1002/pro.5560040713" @default.
- W2030756316 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2143158" @default.
- W2030756316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7670380" @default.
- W2030756316 hasPublicationYear "1995" @default.
- W2030756316 type Work @default.
- W2030756316 sameAs 2030756316 @default.
- W2030756316 citedByCount "77" @default.
- W2030756316 countsByYear W20307563162012 @default.
- W2030756316 countsByYear W20307563162014 @default.
- W2030756316 countsByYear W20307563162015 @default.
- W2030756316 countsByYear W20307563162018 @default.
- W2030756316 countsByYear W20307563162020 @default.
- W2030756316 countsByYear W20307563162022 @default.
- W2030756316 crossrefType "journal-article" @default.
- W2030756316 hasAuthorship W2030756316A5000817440 @default.
- W2030756316 hasAuthorship W2030756316A5004857117 @default.
- W2030756316 hasAuthorship W2030756316A5008171752 @default.
- W2030756316 hasAuthorship W2030756316A5024598524 @default.
- W2030756316 hasAuthorship W2030756316A5040526346 @default.
- W2030756316 hasAuthorship W2030756316A5084003807 @default.
- W2030756316 hasBestOaLocation W20307563162 @default.
- W2030756316 hasConcept C105795698 @default.
- W2030756316 hasConcept C121332964 @default.
- W2030756316 hasConcept C1276947 @default.
- W2030756316 hasConcept C152822103 @default.
- W2030756316 hasConcept C152877465 @default.
- W2030756316 hasConcept C153180895 @default.
- W2030756316 hasConcept C154945302 @default.
- W2030756316 hasConcept C186060115 @default.
- W2030756316 hasConcept C27438332 @default.
- W2030756316 hasConcept C33923547 @default.
- W2030756316 hasConcept C41008148 @default.