Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030825430> ?p ?o ?g. }
- W2030825430 endingPage "1079" @default.
- W2030825430 startingPage "1055" @default.
- W2030825430 abstract "Purpose – The purpose of this paper is to explore different aggregate production planning (APP) strategies (inventory levelling, validation of the workforce and flexible production alternatives: overtime and/or outsourcing) by using a system dynamics model in a two-level, multi-product, multi-period manpower intensive supply chain (SC). Therefore, the appropriateness of using systems dynamics as a research method, by focusing on managerial applications, to analyse APP policies is proven. From the combination of systems dynamics and APP, recommendations and action strategies are considered for each scenario to understand how the system performs and to improve decision making on APP in the SC context. Design/methodology/approach – The research design analyses a typical factory setting with representative parameter settings for five different conventional APP policies – inventory levelling, workforce variation, overtime, outsourcing and a combination of overtime and outsourcing – through deterministic systems dynamics-based simulation. In order to validate the simulation model, the results from published APP models were replicated. Then, optimisation is conducted for this deterministic setting to determine the performance of all these typical policies with optimal parameter settings. Next, a Monte Carlo stochastic simulation is used to assess the robustness of such performances in a variety of demand settings. Different aggregate plans are tested and the effect that events like demand variability and production times have on the SC performance results is analysed. Findings – The results support the assertion that the greater the demand variability, the higher the flexibility costs (overtime, outsourcing, inventory levelling, and contracts and firings). As greater inter-month oscillations appear, which must be covered with additional alternatives, the optimum number of employees must be determined by analysing the interchanges and marginal costs between capacity oversizing costs (wages, idle time, storage) and the costs to undersize it (penalties for lowering safety stocks, delayed demand, greater use of overtime and outsourcing). Accordingly, controlling the times to avoid increased costs and penalties incurred by delayed demand becomes an essential important task, but one that also depends on the characteristics of this variability. Practical implications – This paper has developed a modelling approach for APP in a manpower intensive SC by applying system dynamics. It includes a simulation model, the analysis of several scenarios, the impact on performance caused by variability events in the parameters, and some recommendations and action strategies to be subsequently applied. The modelling methodology proposed can be employed to design-specific models for each SC. Originality/value – This paper proposes an APP system dynamics approach in a two-level, multi-product, multi-period manpower intensive SC for the first time. This model bridges the gap in the literature relating to simulation, specifically system dynamics and its application for APP. The paper also provides a qualitative description of the various pros and cons of each analysed policy and how they can be combined." @default.
- W2030825430 created "2016-06-24" @default.
- W2030825430 creator A5011338661 @default.
- W2030825430 creator A5029173072 @default.
- W2030825430 creator A5051490654 @default.
- W2030825430 date "2014-07-29" @default.
- W2030825430 modified "2023-10-02" @default.
- W2030825430 title "Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies" @default.
- W2030825430 cites W1973727012 @default.
- W2030825430 cites W1980135079 @default.
- W2030825430 cites W1987725324 @default.
- W2030825430 cites W1989918894 @default.
- W2030825430 cites W1997751913 @default.
- W2030825430 cites W1998269848 @default.
- W2030825430 cites W1998884135 @default.
- W2030825430 cites W2001368585 @default.
- W2030825430 cites W2001925118 @default.
- W2030825430 cites W2007240797 @default.
- W2030825430 cites W2008620300 @default.
- W2030825430 cites W2009334942 @default.
- W2030825430 cites W2018831095 @default.
- W2030825430 cites W2023270691 @default.
- W2030825430 cites W2030556876 @default.
- W2030825430 cites W2031168880 @default.
- W2030825430 cites W2031871330 @default.
- W2030825430 cites W2033692247 @default.
- W2030825430 cites W2040659377 @default.
- W2030825430 cites W2041836241 @default.
- W2030825430 cites W2042437292 @default.
- W2030825430 cites W2043331640 @default.
- W2030825430 cites W2047151592 @default.
- W2030825430 cites W2052086571 @default.
- W2030825430 cites W2055979544 @default.
- W2030825430 cites W2056547333 @default.
- W2030825430 cites W2058749784 @default.
- W2030825430 cites W2065158775 @default.
- W2030825430 cites W2076490698 @default.
- W2030825430 cites W2113348250 @default.
- W2030825430 cites W2124572944 @default.
- W2030825430 cites W2156826026 @default.
- W2030825430 cites W2163450002 @default.
- W2030825430 cites W2502361707 @default.
- W2030825430 cites W1985857105 @default.
- W2030825430 doi "https://doi.org/10.1108/ijopm-06-2012-0238" @default.
- W2030825430 hasPublicationYear "2014" @default.
- W2030825430 type Work @default.
- W2030825430 sameAs 2030825430 @default.
- W2030825430 citedByCount "15" @default.
- W2030825430 countsByYear W20308254302016 @default.
- W2030825430 countsByYear W20308254302017 @default.
- W2030825430 countsByYear W20308254302018 @default.
- W2030825430 countsByYear W20308254302019 @default.
- W2030825430 countsByYear W20308254302020 @default.
- W2030825430 countsByYear W20308254302022 @default.
- W2030825430 crossrefType "journal-article" @default.
- W2030825430 hasAuthorship W2030825430A5011338661 @default.
- W2030825430 hasAuthorship W2030825430A5029173072 @default.
- W2030825430 hasAuthorship W2030825430A5051490654 @default.
- W2030825430 hasConcept C108713360 @default.
- W2030825430 hasConcept C127413603 @default.
- W2030825430 hasConcept C144133560 @default.
- W2030825430 hasConcept C145236788 @default.
- W2030825430 hasConcept C151730666 @default.
- W2030825430 hasConcept C154945302 @default.
- W2030825430 hasConcept C160383950 @default.
- W2030825430 hasConcept C162324750 @default.
- W2030825430 hasConcept C162853370 @default.
- W2030825430 hasConcept C175444787 @default.
- W2030825430 hasConcept C187736073 @default.
- W2030825430 hasConcept C21547014 @default.
- W2030825430 hasConcept C2777909354 @default.
- W2030825430 hasConcept C2778348673 @default.
- W2030825430 hasConcept C2779343474 @default.
- W2030825430 hasConcept C2780407378 @default.
- W2030825430 hasConcept C2780598303 @default.
- W2030825430 hasConcept C41008148 @default.
- W2030825430 hasConcept C42475967 @default.
- W2030825430 hasConcept C46934059 @default.
- W2030825430 hasConcept C77405623 @default.
- W2030825430 hasConcept C86803240 @default.
- W2030825430 hasConceptScore W2030825430C108713360 @default.
- W2030825430 hasConceptScore W2030825430C127413603 @default.
- W2030825430 hasConceptScore W2030825430C144133560 @default.
- W2030825430 hasConceptScore W2030825430C145236788 @default.
- W2030825430 hasConceptScore W2030825430C151730666 @default.
- W2030825430 hasConceptScore W2030825430C154945302 @default.
- W2030825430 hasConceptScore W2030825430C160383950 @default.
- W2030825430 hasConceptScore W2030825430C162324750 @default.
- W2030825430 hasConceptScore W2030825430C162853370 @default.
- W2030825430 hasConceptScore W2030825430C175444787 @default.
- W2030825430 hasConceptScore W2030825430C187736073 @default.
- W2030825430 hasConceptScore W2030825430C21547014 @default.
- W2030825430 hasConceptScore W2030825430C2777909354 @default.
- W2030825430 hasConceptScore W2030825430C2778348673 @default.
- W2030825430 hasConceptScore W2030825430C2779343474 @default.
- W2030825430 hasConceptScore W2030825430C2780407378 @default.
- W2030825430 hasConceptScore W2030825430C2780598303 @default.
- W2030825430 hasConceptScore W2030825430C41008148 @default.