Matches in SemOpenAlex for { <https://semopenalex.org/work/W2030998045> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2030998045 endingPage "170" @default.
- W2030998045 startingPage "159" @default.
- W2030998045 abstract "Irrigation is the largest use of fresh water globally, and improved management of water within irrigation systems is essential if scarce resources are to be used to their maximum benefit and used in an equitable manner. The management of water allocation in large irrigation systems is important, as even a small improvement in operation may lead to significant benefits. An optimisation approach based on genetic algorithms (GAs) is described for real time allocation of irrigation water supplies. Appropriate objective functions for the water allocation problem have been derived previously and solved using quadratic programming (QP). This paper describes work on the development of a GA for the water allocation problem. The GA approach is very flexible, and is easily set up for a wide range of linear and non-linear objective functions. This paper presents the development of a GA for the irrigation water allocation problem and investigates the sensitivity of the approach to different formulations. The GA approach can provide solutions that are similar to those produced by QP. It is, however, sensitive to string length, and has difficulty in meeting closed nodal water balance constraints. It is concluded that the GA approach offers no advantage over the QP for the water allocation problem. Copyright © 2001 John Wiley & Sons, Ltd. L'irrigation est, dans le monde, la manière la plus répandue d'exploiter l'eau douce et l'amélioration de la gestion de l'eau, au sein des systèmes d'irrigation, est essentielle si l'on veut utiliser de façon équitable les ressources peu abondantes au maximum de leur bienfait. La gestion de la répartition de l'eau dans les grands systèmes d'irrigation est donc importante: la mise en place d'une infime amélioration peut en effet engendrer des bénéfices considérables. Une approche d'optimisation, basée sur les algorithmes génétiques (AGs) pour une répartition en temps réel des provisions d'eau pour l'irrigation, est exposée. D'adéquates fonctions objectives pour le problème de la répartition de l'eau ont auparavant été identifiées et résolues en utilisant la programmation quadratique (PQ). Notre article décrit le travail réalisé lors du développement d'un AG concernant le problème de répartition de l'eau. L'approche proposée par l'AG est très souple et peut facilement être mise en place pour une grande variété de fonctions objectives linéaires ou non. Notre article présente le développement d'un AG pour le problème de répartition de l'eau destinée à l'irrigation et examine la sensibilité de cette approche à des formulations différentes. L'approche AG peut fournir en fait des solutions semblables à celles issues de la PQ. Mais elle est toutefois sensible à la longueur des séries et éprouve des difficultés à répondre aux restrictions imposées par l'étroit équilibre nodal de l'eau. En conclusion, il apparaît que l'approche AG n'offre pas plus d'avantages que la PQ en ce qui concerne le problème de la répartition de l'eau. Copyright © 2001 John Wiley & Sons, Ltd." @default.
- W2030998045 created "2016-06-24" @default.
- W2030998045 creator A5052233082 @default.
- W2030998045 creator A5070921160 @default.
- W2030998045 date "2001-01-01" @default.
- W2030998045 modified "2023-10-01" @default.
- W2030998045 title "Application of a genetic algorithm for water allocation in an irrigation system" @default.
- W2030998045 cites W1978228947 @default.
- W2030998045 cites W1980694218 @default.
- W2030998045 cites W2037801859 @default.
- W2030998045 cites W2137407971 @default.
- W2030998045 cites W2142183404 @default.
- W2030998045 doi "https://doi.org/10.1002/ird.9" @default.
- W2030998045 hasPublicationYear "2001" @default.
- W2030998045 type Work @default.
- W2030998045 sameAs 2030998045 @default.
- W2030998045 citedByCount "29" @default.
- W2030998045 countsByYear W20309980452012 @default.
- W2030998045 countsByYear W20309980452013 @default.
- W2030998045 countsByYear W20309980452014 @default.
- W2030998045 countsByYear W20309980452017 @default.
- W2030998045 countsByYear W20309980452018 @default.
- W2030998045 countsByYear W20309980452019 @default.
- W2030998045 countsByYear W20309980452020 @default.
- W2030998045 countsByYear W20309980452021 @default.
- W2030998045 countsByYear W20309980452022 @default.
- W2030998045 crossrefType "journal-article" @default.
- W2030998045 hasAuthorship W2030998045A5052233082 @default.
- W2030998045 hasAuthorship W2030998045A5070921160 @default.
- W2030998045 hasConcept C112077630 @default.
- W2030998045 hasConcept C126255220 @default.
- W2030998045 hasConcept C127413603 @default.
- W2030998045 hasConcept C153823671 @default.
- W2030998045 hasConcept C18903297 @default.
- W2030998045 hasConcept C3020013979 @default.
- W2030998045 hasConcept C33923547 @default.
- W2030998045 hasConcept C39432304 @default.
- W2030998045 hasConcept C41008148 @default.
- W2030998045 hasConcept C41045048 @default.
- W2030998045 hasConcept C524765639 @default.
- W2030998045 hasConcept C86803240 @default.
- W2030998045 hasConcept C88463610 @default.
- W2030998045 hasConcept C8880873 @default.
- W2030998045 hasConcept C88862950 @default.
- W2030998045 hasConceptScore W2030998045C112077630 @default.
- W2030998045 hasConceptScore W2030998045C126255220 @default.
- W2030998045 hasConceptScore W2030998045C127413603 @default.
- W2030998045 hasConceptScore W2030998045C153823671 @default.
- W2030998045 hasConceptScore W2030998045C18903297 @default.
- W2030998045 hasConceptScore W2030998045C3020013979 @default.
- W2030998045 hasConceptScore W2030998045C33923547 @default.
- W2030998045 hasConceptScore W2030998045C39432304 @default.
- W2030998045 hasConceptScore W2030998045C41008148 @default.
- W2030998045 hasConceptScore W2030998045C41045048 @default.
- W2030998045 hasConceptScore W2030998045C524765639 @default.
- W2030998045 hasConceptScore W2030998045C86803240 @default.
- W2030998045 hasConceptScore W2030998045C88463610 @default.
- W2030998045 hasConceptScore W2030998045C8880873 @default.
- W2030998045 hasConceptScore W2030998045C88862950 @default.
- W2030998045 hasIssue "2" @default.
- W2030998045 hasLocation W20309980451 @default.
- W2030998045 hasOpenAccess W2030998045 @default.
- W2030998045 hasPrimaryLocation W20309980451 @default.
- W2030998045 hasRelatedWork W1031855829 @default.
- W2030998045 hasRelatedWork W1523518197 @default.
- W2030998045 hasRelatedWork W2026568746 @default.
- W2030998045 hasRelatedWork W2097557129 @default.
- W2030998045 hasRelatedWork W2348324965 @default.
- W2030998045 hasRelatedWork W2349739380 @default.
- W2030998045 hasRelatedWork W2371367379 @default.
- W2030998045 hasRelatedWork W2379868931 @default.
- W2030998045 hasRelatedWork W2789413138 @default.
- W2030998045 hasRelatedWork W3003470263 @default.
- W2030998045 hasVolume "50" @default.
- W2030998045 isParatext "false" @default.
- W2030998045 isRetracted "false" @default.
- W2030998045 magId "2030998045" @default.
- W2030998045 workType "article" @default.