Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031149397> ?p ?o ?g. }
- W2031149397 endingPage "329" @default.
- W2031149397 startingPage "318" @default.
- W2031149397 abstract "Structured covariances occurring in spectral analysis, filtering and identification need to be estimated from a finite observation record. The corresponding sample covariance usually fails to possess the required structure. This is the case, for instance, in the Byrnes-Georgiou-Lindquist THREE-like tunable, high-resolution spectral estimators. There, the output covariance Σ of a linear filter is needed to initialize the spectral estimation technique. The sample covariance estimate Σ, however, is usually not compatible with the filter. In this paper, we present a new, systematic way to overcome this difficulty. The new estimate Σ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ο</sub> is obtained by solving an ancillary problem with an entropic-type criterion. Extensive scalar and multivariate simulation shows that this new approach consistently leads to a significant improvement of the spectral estimators performances." @default.
- W2031149397 created "2016-06-24" @default.
- W2031149397 creator A5005905901 @default.
- W2031149397 creator A5015648788 @default.
- W2031149397 creator A5088792059 @default.
- W2031149397 date "2012-02-01" @default.
- W2031149397 modified "2023-09-25" @default.
- W2031149397 title "A Maximum Entropy Enhancement for a Family of High-Resolution Spectral Estimators" @default.
- W2031149397 cites W1993408859 @default.
- W2031149397 cites W1999640431 @default.
- W2031149397 cites W2010730829 @default.
- W2031149397 cites W2017754977 @default.
- W2031149397 cites W2018490621 @default.
- W2031149397 cites W2023949578 @default.
- W2031149397 cites W2030375308 @default.
- W2031149397 cites W2070896621 @default.
- W2031149397 cites W2074488941 @default.
- W2031149397 cites W2099280778 @default.
- W2031149397 cites W2101918153 @default.
- W2031149397 cites W2106525189 @default.
- W2031149397 cites W2107561939 @default.
- W2031149397 cites W2119127629 @default.
- W2031149397 cites W2125327144 @default.
- W2031149397 cites W2125368842 @default.
- W2031149397 cites W2130893270 @default.
- W2031149397 cites W2132328168 @default.
- W2031149397 cites W2133186968 @default.
- W2031149397 cites W2137507407 @default.
- W2031149397 cites W2141844446 @default.
- W2031149397 cites W2157273492 @default.
- W2031149397 cites W2165694945 @default.
- W2031149397 cites W2168017692 @default.
- W2031149397 cites W2168088676 @default.
- W2031149397 cites W2170060163 @default.
- W2031149397 cites W2171503148 @default.
- W2031149397 cites W2951317484 @default.
- W2031149397 cites W4250589301 @default.
- W2031149397 cites W45555743 @default.
- W2031149397 doi "https://doi.org/10.1109/tac.2011.2161842" @default.
- W2031149397 hasPublicationYear "2012" @default.
- W2031149397 type Work @default.
- W2031149397 sameAs 2031149397 @default.
- W2031149397 citedByCount "68" @default.
- W2031149397 countsByYear W20311493972012 @default.
- W2031149397 countsByYear W20311493972013 @default.
- W2031149397 countsByYear W20311493972014 @default.
- W2031149397 countsByYear W20311493972015 @default.
- W2031149397 countsByYear W20311493972016 @default.
- W2031149397 countsByYear W20311493972017 @default.
- W2031149397 countsByYear W20311493972018 @default.
- W2031149397 countsByYear W20311493972019 @default.
- W2031149397 countsByYear W20311493972020 @default.
- W2031149397 countsByYear W20311493972021 @default.
- W2031149397 countsByYear W20311493972022 @default.
- W2031149397 countsByYear W20311493972023 @default.
- W2031149397 crossrefType "journal-article" @default.
- W2031149397 hasAuthorship W2031149397A5005905901 @default.
- W2031149397 hasAuthorship W2031149397A5015648788 @default.
- W2031149397 hasAuthorship W2031149397A5088792059 @default.
- W2031149397 hasBestOaLocation W20311493972 @default.
- W2031149397 hasConcept C102519508 @default.
- W2031149397 hasConcept C105795698 @default.
- W2031149397 hasConcept C106131492 @default.
- W2031149397 hasConcept C106301342 @default.
- W2031149397 hasConcept C11413529 @default.
- W2031149397 hasConcept C121332964 @default.
- W2031149397 hasConcept C124967146 @default.
- W2031149397 hasConcept C1276947 @default.
- W2031149397 hasConcept C134306372 @default.
- W2031149397 hasConcept C178650346 @default.
- W2031149397 hasConcept C185429906 @default.
- W2031149397 hasConcept C28826006 @default.
- W2031149397 hasConcept C30049272 @default.
- W2031149397 hasConcept C31972630 @default.
- W2031149397 hasConcept C33923547 @default.
- W2031149397 hasConcept C41008148 @default.
- W2031149397 hasConcept C4839761 @default.
- W2031149397 hasConcept C62520636 @default.
- W2031149397 hasConceptScore W2031149397C102519508 @default.
- W2031149397 hasConceptScore W2031149397C105795698 @default.
- W2031149397 hasConceptScore W2031149397C106131492 @default.
- W2031149397 hasConceptScore W2031149397C106301342 @default.
- W2031149397 hasConceptScore W2031149397C11413529 @default.
- W2031149397 hasConceptScore W2031149397C121332964 @default.
- W2031149397 hasConceptScore W2031149397C124967146 @default.
- W2031149397 hasConceptScore W2031149397C1276947 @default.
- W2031149397 hasConceptScore W2031149397C134306372 @default.
- W2031149397 hasConceptScore W2031149397C178650346 @default.
- W2031149397 hasConceptScore W2031149397C185429906 @default.
- W2031149397 hasConceptScore W2031149397C28826006 @default.
- W2031149397 hasConceptScore W2031149397C30049272 @default.
- W2031149397 hasConceptScore W2031149397C31972630 @default.
- W2031149397 hasConceptScore W2031149397C33923547 @default.
- W2031149397 hasConceptScore W2031149397C41008148 @default.
- W2031149397 hasConceptScore W2031149397C4839761 @default.
- W2031149397 hasConceptScore W2031149397C62520636 @default.
- W2031149397 hasIssue "2" @default.
- W2031149397 hasLocation W20311493971 @default.