Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031235352> ?p ?o ?g. }
- W2031235352 endingPage "1245" @default.
- W2031235352 startingPage "1227" @default.
- W2031235352 abstract "Blood oxygenation level dependent (BOLD) signals in functional magnetic resonance imaging (fMRI) are often small compared to the level of noise in the data. The sources of noise are numerous including different kinds of motion artifacts and physiological noise with complex patterns. This complicates the statistical analysis of the fMRI data. In this study, we propose an automatic method to reduce fMRI artifacts based on independent component analysis (ICA). We trained a supervised classifier to distinguish between independent components relating to a potentially task-related signal and independent components clearly relating to structured noise. After the components had been classified as either signal or noise, a denoised fMR time-series was reconstructed based only on the independent components classified as potentially task-related. The classifier was a novel global (fixed structure) decision tree trained in a Neyman–Pearson (NP) framework, which allowed the shape of the decision regions to be controlled effectively. Additionally, the conservativeness of the classifier could be tuned by modifying the NP threshold. The classifier was tested against the component classifications by an expert with the data from a category learning task. The test set as well as the expert were different from the data used for classifier training and the expert labeling the training set. The misclassification rate was between 0.2 and 0.3 for both the event-related and blocked designs and it was consistent among variety of different NP thresholds. The effects of denoising on the group-level statistical analyses were as expected: The denoising generally decreased Z-scores in the white matter, where extreme Z-values can be expected to reflect artifacts. A similar but weaker decrease in Z-scores was observed in the gray matter on average. These two observations suggest that denoising was likely to reduce artifacts from gray matter and could be useful to improve the detection of activations. We conclude that automatic ICA-based denoising offers a potentially useful approach to improve the quality of fMRI data and consequently increase the accuracy of the statistical analysis of these data." @default.
- W2031235352 created "2016-06-24" @default.
- W2031235352 creator A5014949118 @default.
- W2031235352 creator A5021572716 @default.
- W2031235352 creator A5046868253 @default.
- W2031235352 creator A5049448149 @default.
- W2031235352 creator A5057959731 @default.
- W2031235352 creator A5077458616 @default.
- W2031235352 date "2008-02-01" @default.
- W2031235352 modified "2023-10-12" @default.
- W2031235352 title "Automatic independent component labeling for artifact removal in fMRI" @default.
- W2031235352 cites W1966537304 @default.
- W2031235352 cites W1972722418 @default.
- W2031235352 cites W1978660262 @default.
- W2031235352 cites W1978823699 @default.
- W2031235352 cites W1997260622 @default.
- W2031235352 cites W2005238835 @default.
- W2031235352 cites W2006096283 @default.
- W2031235352 cites W2015552318 @default.
- W2031235352 cites W2016444985 @default.
- W2031235352 cites W2020001168 @default.
- W2031235352 cites W2036630433 @default.
- W2031235352 cites W2047381627 @default.
- W2031235352 cites W2058046532 @default.
- W2031235352 cites W2066313169 @default.
- W2031235352 cites W2066494844 @default.
- W2031235352 cites W2070115712 @default.
- W2031235352 cites W2071881327 @default.
- W2031235352 cites W2073279929 @default.
- W2031235352 cites W2090664364 @default.
- W2031235352 cites W2099801199 @default.
- W2031235352 cites W2110692145 @default.
- W2031235352 cites W2112688502 @default.
- W2031235352 cites W2113195077 @default.
- W2031235352 cites W2116799974 @default.
- W2031235352 cites W2117621792 @default.
- W2031235352 cites W2123649031 @default.
- W2031235352 cites W2124498607 @default.
- W2031235352 cites W2125027820 @default.
- W2031235352 cites W2128445210 @default.
- W2031235352 cites W2130526861 @default.
- W2031235352 cites W2133492826 @default.
- W2031235352 cites W2136763679 @default.
- W2031235352 cites W2139447054 @default.
- W2031235352 cites W2140343355 @default.
- W2031235352 cites W2141663826 @default.
- W2031235352 cites W2143112732 @default.
- W2031235352 cites W2148726987 @default.
- W2031235352 cites W2154084882 @default.
- W2031235352 cites W2155734932 @default.
- W2031235352 cites W2157825442 @default.
- W2031235352 cites W2169428430 @default.
- W2031235352 cites W2170976240 @default.
- W2031235352 cites W4235770099 @default.
- W2031235352 doi "https://doi.org/10.1016/j.neuroimage.2007.10.013" @default.
- W2031235352 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2374836" @default.
- W2031235352 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18042495" @default.
- W2031235352 hasPublicationYear "2008" @default.
- W2031235352 type Work @default.
- W2031235352 sameAs 2031235352 @default.
- W2031235352 citedByCount "205" @default.
- W2031235352 countsByYear W20312353522012 @default.
- W2031235352 countsByYear W20312353522013 @default.
- W2031235352 countsByYear W20312353522014 @default.
- W2031235352 countsByYear W20312353522015 @default.
- W2031235352 countsByYear W20312353522016 @default.
- W2031235352 countsByYear W20312353522017 @default.
- W2031235352 countsByYear W20312353522018 @default.
- W2031235352 countsByYear W20312353522019 @default.
- W2031235352 countsByYear W20312353522020 @default.
- W2031235352 countsByYear W20312353522021 @default.
- W2031235352 countsByYear W20312353522022 @default.
- W2031235352 countsByYear W20312353522023 @default.
- W2031235352 crossrefType "journal-article" @default.
- W2031235352 hasAuthorship W2031235352A5014949118 @default.
- W2031235352 hasAuthorship W2031235352A5021572716 @default.
- W2031235352 hasAuthorship W2031235352A5046868253 @default.
- W2031235352 hasAuthorship W2031235352A5049448149 @default.
- W2031235352 hasAuthorship W2031235352A5057959731 @default.
- W2031235352 hasAuthorship W2031235352A5077458616 @default.
- W2031235352 hasBestOaLocation W20312353522 @default.
- W2031235352 hasConcept C119857082 @default.
- W2031235352 hasConcept C153180895 @default.
- W2031235352 hasConcept C154945302 @default.
- W2031235352 hasConcept C15744967 @default.
- W2031235352 hasConcept C163294075 @default.
- W2031235352 hasConcept C169760540 @default.
- W2031235352 hasConcept C2779226451 @default.
- W2031235352 hasConcept C41008148 @default.
- W2031235352 hasConcept C51432778 @default.
- W2031235352 hasConcept C84525736 @default.
- W2031235352 hasConcept C95623464 @default.
- W2031235352 hasConceptScore W2031235352C119857082 @default.
- W2031235352 hasConceptScore W2031235352C153180895 @default.
- W2031235352 hasConceptScore W2031235352C154945302 @default.
- W2031235352 hasConceptScore W2031235352C15744967 @default.
- W2031235352 hasConceptScore W2031235352C163294075 @default.
- W2031235352 hasConceptScore W2031235352C169760540 @default.