Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031263155> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2031263155 abstract "Marshalling station is the key link in railway network. The two operations, disintegration and marshalling, are the important factors to limit the ability of the marshalling station. According to the above two operations, this paper used the BP neural network model to do a simulation on three levels which are the arrival forecasting, the conditions of disintegration and aggregation, and the generation of marshalling. Finally, we programmed simulations on the Chengdu North Marshalling Mathematics application matures increasingly and computer technology has developed rapidly. Probability theory, queuing theory and computer simulation technology have fully developed for the using of the work with marshalling yard. They also received a lot of breakthrough. These studies are based on the five links of arrival, disintegration, aggregation, marshalling, and starting while they mainly aims at the two key links, the disintegration and marshalling, which limit the ability of the station. Particularly, it can be divided into three aspects: the forecasting of content in arrivals, the simulation on conditions of disintegration and aggregation, and the generation of marshalling. Currently, most of the papers are expansion around one or two links which are only for local optimization and automation. They have ignored how global changing can affect the local parts. So this article uses the latest simulation method and the thoughts of branch-and-bound to do the global simulation and automation, which can realize a brand new system with the simulation of arriving wagon-flow and the automatically imitation of disintegration, aggregation and marshalling." @default.
- W2031263155 created "2016-06-24" @default.
- W2031263155 creator A5007348590 @default.
- W2031263155 creator A5011233253 @default.
- W2031263155 date "2013-10-09" @default.
- W2031263155 modified "2023-09-24" @default.
- W2031263155 title "Marshalling Yard Simulation Based on BP Neural Network Model" @default.
- W2031263155 doi "https://doi.org/10.1061/9780784413159.162" @default.
- W2031263155 hasPublicationYear "2013" @default.
- W2031263155 type Work @default.
- W2031263155 sameAs 2031263155 @default.
- W2031263155 citedByCount "2" @default.
- W2031263155 countsByYear W20312631552014 @default.
- W2031263155 countsByYear W20312631552017 @default.
- W2031263155 crossrefType "proceedings-article" @default.
- W2031263155 hasAuthorship W2031263155A5007348590 @default.
- W2031263155 hasAuthorship W2031263155A5011233253 @default.
- W2031263155 hasConcept C111919701 @default.
- W2031263155 hasConcept C115901376 @default.
- W2031263155 hasConcept C121332964 @default.
- W2031263155 hasConcept C127413603 @default.
- W2031263155 hasConcept C206019424 @default.
- W2031263155 hasConcept C41008148 @default.
- W2031263155 hasConcept C42475967 @default.
- W2031263155 hasConcept C44154836 @default.
- W2031263155 hasConcept C62520636 @default.
- W2031263155 hasConcept C78519656 @default.
- W2031263155 hasConcept C94026978 @default.
- W2031263155 hasConceptScore W2031263155C111919701 @default.
- W2031263155 hasConceptScore W2031263155C115901376 @default.
- W2031263155 hasConceptScore W2031263155C121332964 @default.
- W2031263155 hasConceptScore W2031263155C127413603 @default.
- W2031263155 hasConceptScore W2031263155C206019424 @default.
- W2031263155 hasConceptScore W2031263155C41008148 @default.
- W2031263155 hasConceptScore W2031263155C42475967 @default.
- W2031263155 hasConceptScore W2031263155C44154836 @default.
- W2031263155 hasConceptScore W2031263155C62520636 @default.
- W2031263155 hasConceptScore W2031263155C78519656 @default.
- W2031263155 hasConceptScore W2031263155C94026978 @default.
- W2031263155 hasLocation W20312631551 @default.
- W2031263155 hasOpenAccess W2031263155 @default.
- W2031263155 hasPrimaryLocation W20312631551 @default.
- W2031263155 hasRelatedWork W1485049194 @default.
- W2031263155 hasRelatedWork W1993938374 @default.
- W2031263155 hasRelatedWork W2065300994 @default.
- W2031263155 hasRelatedWork W2109130263 @default.
- W2031263155 hasRelatedWork W2329968853 @default.
- W2031263155 hasRelatedWork W2351067103 @default.
- W2031263155 hasRelatedWork W2356694644 @default.
- W2031263155 hasRelatedWork W2356759244 @default.
- W2031263155 hasRelatedWork W2363238830 @default.
- W2031263155 hasRelatedWork W2390059414 @default.
- W2031263155 hasRelatedWork W2390525846 @default.
- W2031263155 hasRelatedWork W2390594190 @default.
- W2031263155 hasRelatedWork W2730008745 @default.
- W2031263155 hasRelatedWork W2922360973 @default.
- W2031263155 hasRelatedWork W3080361605 @default.
- W2031263155 hasRelatedWork W3151118162 @default.
- W2031263155 hasRelatedWork W3203699806 @default.
- W2031263155 hasRelatedWork W586799875 @default.
- W2031263155 hasRelatedWork W598807424 @default.
- W2031263155 hasRelatedWork W847796710 @default.
- W2031263155 isParatext "false" @default.
- W2031263155 isRetracted "false" @default.
- W2031263155 magId "2031263155" @default.
- W2031263155 workType "article" @default.