Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031295871> ?p ?o ?g. }
- W2031295871 endingPage "1327" @default.
- W2031295871 startingPage "1317" @default.
- W2031295871 abstract "The discovery of cyclic nucleotides as second messengers has paved the way to much of what we know about signal transduction and the mechanisms of hormone action. Even though other signaling pathways activated by growth factors are the focus of much attention, cyclic nucleotides remain among the most important players in hormone action. When envisioned as a linear cascade, the steps involved in cyclic nucleotide signaling are well defined. Hormones bind to receptors that are coupled via G proteins to cyclases, which synthesize cAMP/cGMP. Cyclic nucleotides, in turn, bind and activate protein kinases that phosphorylate enzymes and transcription factors. Changes in gene expression and cell metabolism are the final outcome. This reductionist approach has been most effective in elucidating the steps involved in cyclic nucleotide signaling as well as the downstream targets. However, we must realize that several major questions have remained unanswered. Why does an identical cAMP signal induce replication in one case and withdrawal from the cell cycle and differentiation in another? How do the myriad of feedback regulations, which are being discovered at a steady pace, impact cyclic nucleotide signaling? How does one explain the redundancy of the components of the cyclic nucleotide cascade? Over the years, new dimensions have added complexity to cyclic nucleotide signaling. It is now established that protein kinase As (PKAs) are not the only intracellular effectors of cAMP. Cyclic nucleotide gated channels (1) and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs or EPACs) (2, 3) allow branching of the cyclic nucleotide signals. Compartmentalization of the different components of the signaling cascade is an important determinant of the signal outcome (4), and feedback mechanisms control practically every step of the cyclic nucleotide pathway (5). Therefore, a holistic approach to signaling may provide a better understanding of how cyclic nucleotides function in the cell. Signaling pathways, including cyclic nucleotides, are organized in a nonlinear fashion (6). When an extracellular stimulus reaches the plasma membrane, it is distributed into an array of signals that involves most transduction systems present in a cell, and each component of the signaling cascade is a node of inputs and outputs connecting different signaling pathways. Combinatorial signaling, coincidental detection, signal cross-talk, and signal channeling are buzzwords used to describe this intracellular network. In this context, some steps in the signaling cascade may have new and unexpected functions. In the cyclic nucleotide cascade, phosphodiesterases (PDEs) are the enzymes that hydrolyze cAMP and cGMP, inactivating these second messengers. Together with phosphatases, PDEs are negative steps in the signaling pathway, and signal termination was thought to be their only function. However, they may have a much broader role in signaling when the whole intracellular network is considered. In view of the presence of multiple intracellular effectors of cyclic nucleotides, PDEs may play a role in distributing the cyclic nucleotide signal among PKAs, cyclic nucleotidegated channels, and cAMP-GEFs. Because they are regulated by multiple second messengers and kinases, PDEs also integrate the cyclic nucleotide cascade with other signaling pathways. Finally, PDEs may contribute to signal compartmentalization by controlling the diffusion of the second messenger to different cellular compartments. Here, I will review the most recent advances concerning the structure of PDEs and their role in endocrine cell signaling, and will conclude by highlighting possible applications of the pharma0888-8809/00/$3.00/0 Molecular Endocrinology 14(9): 1317–1327 Copyright © 2000 by The Endocrine Society Printed in U.S.A." @default.
- W2031295871 created "2016-06-24" @default.
- W2031295871 creator A5073141644 @default.
- W2031295871 date "2000-09-01" @default.
- W2031295871 modified "2023-10-14" @default.
- W2031295871 title "Phosphodiesterases and Cyclic Nucleotide Signaling in Endocrine Cells" @default.
- W2031295871 cites W1482785943 @default.
- W2031295871 cites W1485952666 @default.
- W2031295871 cites W1489466981 @default.
- W2031295871 cites W1498681083 @default.
- W2031295871 cites W1499000998 @default.
- W2031295871 cites W1510434099 @default.
- W2031295871 cites W1512899424 @default.
- W2031295871 cites W1514240524 @default.
- W2031295871 cites W1529224585 @default.
- W2031295871 cites W1540498597 @default.
- W2031295871 cites W1558386025 @default.
- W2031295871 cites W1566233194 @default.
- W2031295871 cites W1568589425 @default.
- W2031295871 cites W1574301078 @default.
- W2031295871 cites W1576798989 @default.
- W2031295871 cites W1581415510 @default.
- W2031295871 cites W1590179486 @default.
- W2031295871 cites W1757478802 @default.
- W2031295871 cites W1814425117 @default.
- W2031295871 cites W1836887890 @default.
- W2031295871 cites W1885709862 @default.
- W2031295871 cites W1967220625 @default.
- W2031295871 cites W1967882515 @default.
- W2031295871 cites W1970548320 @default.
- W2031295871 cites W1972608995 @default.
- W2031295871 cites W1973613293 @default.
- W2031295871 cites W1974253631 @default.
- W2031295871 cites W1975769625 @default.
- W2031295871 cites W1977104477 @default.
- W2031295871 cites W1978570830 @default.
- W2031295871 cites W1980358054 @default.
- W2031295871 cites W1981656962 @default.
- W2031295871 cites W1983372510 @default.
- W2031295871 cites W1983768530 @default.
- W2031295871 cites W1984631417 @default.
- W2031295871 cites W1989435471 @default.
- W2031295871 cites W1990401009 @default.
- W2031295871 cites W1994226794 @default.
- W2031295871 cites W2003922574 @default.
- W2031295871 cites W2006282312 @default.
- W2031295871 cites W2006705808 @default.
- W2031295871 cites W2013039234 @default.
- W2031295871 cites W2013479983 @default.
- W2031295871 cites W2017217180 @default.
- W2031295871 cites W2019102477 @default.
- W2031295871 cites W2025654952 @default.
- W2031295871 cites W2029383686 @default.
- W2031295871 cites W2030636433 @default.
- W2031295871 cites W2035200910 @default.
- W2031295871 cites W2035690299 @default.
- W2031295871 cites W2037852588 @default.
- W2031295871 cites W2037913221 @default.
- W2031295871 cites W2042629507 @default.
- W2031295871 cites W2045150258 @default.
- W2031295871 cites W2046406719 @default.
- W2031295871 cites W2046648030 @default.
- W2031295871 cites W2049143026 @default.
- W2031295871 cites W2049998027 @default.
- W2031295871 cites W2051009040 @default.
- W2031295871 cites W2061902990 @default.
- W2031295871 cites W2061929605 @default.
- W2031295871 cites W2062047139 @default.
- W2031295871 cites W2063760489 @default.
- W2031295871 cites W2065365814 @default.
- W2031295871 cites W2067346266 @default.
- W2031295871 cites W2075731394 @default.
- W2031295871 cites W2077274995 @default.
- W2031295871 cites W2078037416 @default.
- W2031295871 cites W2084783054 @default.
- W2031295871 cites W2086549571 @default.
- W2031295871 cites W2088508581 @default.
- W2031295871 cites W2091247632 @default.
- W2031295871 cites W2092094963 @default.
- W2031295871 cites W2092424199 @default.
- W2031295871 cites W2092783808 @default.
- W2031295871 cites W2092875899 @default.
- W2031295871 cites W2093343991 @default.
- W2031295871 cites W2106753244 @default.
- W2031295871 cites W2112100215 @default.
- W2031295871 cites W2117290383 @default.
- W2031295871 cites W2120758187 @default.
- W2031295871 cites W2122745978 @default.
- W2031295871 cites W2137252488 @default.
- W2031295871 cites W2140960985 @default.
- W2031295871 cites W2148665382 @default.
- W2031295871 cites W2150179403 @default.
- W2031295871 cites W2150258341 @default.
- W2031295871 cites W2165758443 @default.
- W2031295871 cites W2166389885 @default.
- W2031295871 cites W2172258989 @default.
- W2031295871 cites W2233551298 @default.
- W2031295871 cites W2402700043 @default.