Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031452361> ?p ?o ?g. }
- W2031452361 endingPage "807" @default.
- W2031452361 startingPage "787" @default.
- W2031452361 abstract "We present an extension of population-based Markov chain Monte Carlo to the transdimensional case. A major challenge is that of simulating from high- and transdimensional target measures. In such cases, Markov chain Monte Carlo methods may not adequately traverse the support of the target; the simulation results will be unreliable. We develop population methods to deal with such problems, and give a result proving the uniform ergodicity of these population algorithms, under mild assumptions. This result is used to demonstrate the superiority, in terms of convergence rate, of a population transition kernel over a reversible jump sampler for a Bayesian variable selection problem. We also give an example of a population algorithm for a Bayesian multivariate mixture model with an unknown number of components. This is applied to gene expression data of 1000 data points in six dimensions and it is demonstrated that our algorithm outperforms some competing Markov chain samplers. In this example, we show how to combine the methods of parallel chains (Geyer, 1991), tempering (Geyer & Thompson, 1995), snooker algorithms (Gilks et al., 1994), constrained sampling and delayed rejection (Green & Mira, 2001)." @default.
- W2031452361 created "2016-06-24" @default.
- W2031452361 creator A5047259277 @default.
- W2031452361 creator A5061496873 @default.
- W2031452361 creator A5085069223 @default.
- W2031452361 date "2007-08-05" @default.
- W2031452361 modified "2023-10-08" @default.
- W2031452361 title "Population-Based Reversible Jump Markov Chain Monte Carlo" @default.
- W2031452361 cites W1511747216 @default.
- W2031452361 cites W1552672157 @default.
- W2031452361 cites W1579271636 @default.
- W2031452361 cites W1582801283 @default.
- W2031452361 cites W1759730364 @default.
- W2031452361 cites W1966158039 @default.
- W2031452361 cites W1968058266 @default.
- W2031452361 cites W1973249296 @default.
- W2031452361 cites W1973594349 @default.
- W2031452361 cites W1976418263 @default.
- W2031452361 cites W1985093013 @default.
- W2031452361 cites W1994908596 @default.
- W2031452361 cites W1995921209 @default.
- W2031452361 cites W2017691540 @default.
- W2031452361 cites W2035756456 @default.
- W2031452361 cites W2038885294 @default.
- W2031452361 cites W2043432627 @default.
- W2031452361 cites W2043880717 @default.
- W2031452361 cites W2047554048 @default.
- W2031452361 cites W2051326462 @default.
- W2031452361 cites W2056760934 @default.
- W2031452361 cites W2064871928 @default.
- W2031452361 cites W2069739265 @default.
- W2031452361 cites W2078644085 @default.
- W2031452361 cites W2085750643 @default.
- W2031452361 cites W2106706098 @default.
- W2031452361 cites W2110156265 @default.
- W2031452361 cites W2112047656 @default.
- W2031452361 cites W2114350394 @default.
- W2031452361 cites W2114964853 @default.
- W2031452361 cites W2130047894 @default.
- W2031452361 cites W2135459617 @default.
- W2031452361 cites W2136796925 @default.
- W2031452361 cites W2138309709 @default.
- W2031452361 cites W2142623799 @default.
- W2031452361 cites W2146646206 @default.
- W2031452361 cites W2147357149 @default.
- W2031452361 cites W2470480953 @default.
- W2031452361 cites W277831955 @default.
- W2031452361 cites W2796432875 @default.
- W2031452361 cites W3004389950 @default.
- W2031452361 cites W3101006260 @default.
- W2031452361 doi "https://doi.org/10.1093/biomet/asm069" @default.
- W2031452361 hasPublicationYear "2007" @default.
- W2031452361 type Work @default.
- W2031452361 sameAs 2031452361 @default.
- W2031452361 citedByCount "82" @default.
- W2031452361 countsByYear W20314523612012 @default.
- W2031452361 countsByYear W20314523612013 @default.
- W2031452361 countsByYear W20314523612014 @default.
- W2031452361 countsByYear W20314523612015 @default.
- W2031452361 countsByYear W20314523612016 @default.
- W2031452361 countsByYear W20314523612017 @default.
- W2031452361 countsByYear W20314523612018 @default.
- W2031452361 countsByYear W20314523612019 @default.
- W2031452361 countsByYear W20314523612020 @default.
- W2031452361 countsByYear W20314523612021 @default.
- W2031452361 countsByYear W20314523612023 @default.
- W2031452361 crossrefType "journal-article" @default.
- W2031452361 hasAuthorship W2031452361A5047259277 @default.
- W2031452361 hasAuthorship W2031452361A5061496873 @default.
- W2031452361 hasAuthorship W2031452361A5085069223 @default.
- W2031452361 hasBestOaLocation W20314523612 @default.
- W2031452361 hasConcept C105795698 @default.
- W2031452361 hasConcept C111350023 @default.
- W2031452361 hasConcept C121332964 @default.
- W2031452361 hasConcept C121864883 @default.
- W2031452361 hasConcept C144024400 @default.
- W2031452361 hasConcept C149923435 @default.
- W2031452361 hasConcept C163836022 @default.
- W2031452361 hasConcept C189973286 @default.
- W2031452361 hasConcept C19499675 @default.
- W2031452361 hasConcept C2780591659 @default.
- W2031452361 hasConcept C2780695682 @default.
- W2031452361 hasConcept C28826006 @default.
- W2031452361 hasConcept C2908647359 @default.
- W2031452361 hasConcept C33923547 @default.
- W2031452361 hasConcept C62520636 @default.
- W2031452361 hasConcept C97074811 @default.
- W2031452361 hasConcept C98763669 @default.
- W2031452361 hasConceptScore W2031452361C105795698 @default.
- W2031452361 hasConceptScore W2031452361C111350023 @default.
- W2031452361 hasConceptScore W2031452361C121332964 @default.
- W2031452361 hasConceptScore W2031452361C121864883 @default.
- W2031452361 hasConceptScore W2031452361C144024400 @default.
- W2031452361 hasConceptScore W2031452361C149923435 @default.
- W2031452361 hasConceptScore W2031452361C163836022 @default.
- W2031452361 hasConceptScore W2031452361C189973286 @default.
- W2031452361 hasConceptScore W2031452361C19499675 @default.
- W2031452361 hasConceptScore W2031452361C2780591659 @default.