Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031507002> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W2031507002 abstract "Traditional patent classification schemes, which are mainly based on either IPC or UPC, are too complicated and general to meet the needs of specific industries. The paper proposes a dynamic classification method, the “user demand-driven patent topic classification”, aiming to a specific industry or technology area. In the paper, classification topics of the method are grouped into technical topic, application topic and application-technical mixed topic. Automatic process of the method using machine learning techniques is presented as well. A case study on the technology area of system on a chip (SoC) is conducted using machine learning techniques, validating the feasibility of the method. The experiment results demonstrate that automatic patent topic classification based on the combination of patents’ metadata and citation information can obtain perfect performance with a greatly simplified document preprocessing." @default.
- W2031507002 created "2016-06-24" @default.
- W2031507002 creator A5011276277 @default.
- W2031507002 creator A5044072965 @default.
- W2031507002 creator A5052118475 @default.
- W2031507002 creator A5084138890 @default.
- W2031507002 date "2014-07-21" @default.
- W2031507002 modified "2023-10-16" @default.
- W2031507002 title "USER DEMAND-DRIVEN PATENT TOPIC CLASSIFICATION USING MACHINE LEARNING TECHNIQUES" @default.
- W2031507002 cites W585685877 @default.
- W2031507002 cites W622915976 @default.
- W2031507002 doi "https://doi.org/10.1142/9789814619998_0108" @default.
- W2031507002 hasPublicationYear "2014" @default.
- W2031507002 type Work @default.
- W2031507002 sameAs 2031507002 @default.
- W2031507002 citedByCount "0" @default.
- W2031507002 crossrefType "proceedings-article" @default.
- W2031507002 hasAuthorship W2031507002A5011276277 @default.
- W2031507002 hasAuthorship W2031507002A5044072965 @default.
- W2031507002 hasAuthorship W2031507002A5052118475 @default.
- W2031507002 hasAuthorship W2031507002A5084138890 @default.
- W2031507002 hasConcept C119857082 @default.
- W2031507002 hasConcept C154945302 @default.
- W2031507002 hasConcept C2983523559 @default.
- W2031507002 hasConcept C41008148 @default.
- W2031507002 hasConcept C49774154 @default.
- W2031507002 hasConceptScore W2031507002C119857082 @default.
- W2031507002 hasConceptScore W2031507002C154945302 @default.
- W2031507002 hasConceptScore W2031507002C2983523559 @default.
- W2031507002 hasConceptScore W2031507002C41008148 @default.
- W2031507002 hasConceptScore W2031507002C49774154 @default.
- W2031507002 hasLocation W20315070021 @default.
- W2031507002 hasOpenAccess W2031507002 @default.
- W2031507002 hasPrimaryLocation W20315070021 @default.
- W2031507002 hasRelatedWork W2961085424 @default.
- W2031507002 hasRelatedWork W3046775127 @default.
- W2031507002 hasRelatedWork W3107474891 @default.
- W2031507002 hasRelatedWork W3170094116 @default.
- W2031507002 hasRelatedWork W4205958290 @default.
- W2031507002 hasRelatedWork W4285260836 @default.
- W2031507002 hasRelatedWork W4286629047 @default.
- W2031507002 hasRelatedWork W4306321456 @default.
- W2031507002 hasRelatedWork W4306674287 @default.
- W2031507002 hasRelatedWork W4224009465 @default.
- W2031507002 isParatext "false" @default.
- W2031507002 isRetracted "false" @default.
- W2031507002 magId "2031507002" @default.
- W2031507002 workType "article" @default.