Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031569236> ?p ?o ?g. }
- W2031569236 endingPage "94" @default.
- W2031569236 startingPage "79" @default.
- W2031569236 abstract "T HE DEVELOPMENT OF cardiac catheterization, begun by Forssmann and Cournand in the 1930s and 194Os, opened cardiac hemodynamic investigations to clinical investigators studying pathologic states in humans, thus removing the necessity of relying entirely on information obtained from animal experimentation. Despite the early development of clinical methods for measuring pressure in cardiac chambers and great vessels, and total flow emanating from the heart, techniques for quantitating flow to selected organs have been slow to develop. This has been particularly true for coronary blood flow measurements in humans. Over the past several decades, advances in measurement technologies have allowed physiologists to obtain a sophisticated understanding of regulation of coronary blood flow in animals. However, most of these techniques, developed and used for animal investigations, have not been directly transferable to human patients. Until relatively recently, only global left ventricular perfusion could be measured in conscious humans. The spatial resolution of commonly used techniques to measure myocardial flow in humans was crude, and the temporal resolution poor. These unsophisticated approaches contrast strikingly with the elegant methods available for animal studies, which allow perfusion in the myocardium to be measured with a spatial resolution in microns’ and a temporal resolution in milliseconds.* The necessity of relying on global coronary flow for estimates of regional perfusion is particularly inappropriate for the myocardium, since regional heterogeneity in perfusion is the rule in atherosclerotic coronary artery disease, and not infrequent in other pathologic states. The requirements for spatial resolution of perfusion in the myocardium are doubly demanding, since in addition to sophisticated lateral edge detection, an ideal measurement technique should be able to detect transmural differences in perfusion. The requirements for temporal resolution of perfusion in the myocardium are also stringent, since metabolic and neurogenic factors can alter coronary flow over a wide range with very short time constants. It is not surprising that because of the severe restraints imposed by the nature of the target organ, no one technique approaches that which would be considered ideal. Such an ideal method for measuring coronary blood flow in humans would allow detailed spatial resolution, have a rapid frequency response, allowing it to detect phasic changes in flow, and be minimally invasive. Unfortunately, no such ideal method presently exists. The purpose of this review is to evaluate those techniques that are in present use for measuring myocardial blood flow in humans. Newer techniques under active investigation will also be briefly examined. Emphasized in this discussion will be those techniques with which the authors have the greatest personal experience. The advantages and limitations of each technique will be compared to a theoretic ideal agent. The methodologies will be grouped into the following categories: electromagnetic flow meters, diffus-" @default.
- W2031569236 created "2016-06-24" @default.
- W2031569236 creator A5020707125 @default.
- W2031569236 creator A5054771891 @default.
- W2031569236 creator A5073910336 @default.
- W2031569236 date "1988-09-01" @default.
- W2031569236 modified "2023-10-17" @default.
- W2031569236 title "Methods of measuring myocardial blood flow in humans" @default.
- W2031569236 cites W1968318314 @default.
- W2031569236 cites W1968370421 @default.
- W2031569236 cites W1968711590 @default.
- W2031569236 cites W1970629587 @default.
- W2031569236 cites W1971132849 @default.
- W2031569236 cites W1971300664 @default.
- W2031569236 cites W1976195954 @default.
- W2031569236 cites W1976440347 @default.
- W2031569236 cites W1977062321 @default.
- W2031569236 cites W1977909250 @default.
- W2031569236 cites W1979935420 @default.
- W2031569236 cites W1982400376 @default.
- W2031569236 cites W1983322810 @default.
- W2031569236 cites W1990518460 @default.
- W2031569236 cites W1991752835 @default.
- W2031569236 cites W1993349948 @default.
- W2031569236 cites W1998812738 @default.
- W2031569236 cites W2002158324 @default.
- W2031569236 cites W2002652977 @default.
- W2031569236 cites W2010041537 @default.
- W2031569236 cites W2010592322 @default.
- W2031569236 cites W2014912400 @default.
- W2031569236 cites W2018640142 @default.
- W2031569236 cites W2018892394 @default.
- W2031569236 cites W2023415190 @default.
- W2031569236 cites W2026395146 @default.
- W2031569236 cites W2026826179 @default.
- W2031569236 cites W2030430514 @default.
- W2031569236 cites W2033349147 @default.
- W2031569236 cites W2034147548 @default.
- W2031569236 cites W2046480910 @default.
- W2031569236 cites W2046504239 @default.
- W2031569236 cites W2049516138 @default.
- W2031569236 cites W2051644947 @default.
- W2031569236 cites W2055103382 @default.
- W2031569236 cites W2056821587 @default.
- W2031569236 cites W2061814786 @default.
- W2031569236 cites W2071667444 @default.
- W2031569236 cites W2074224726 @default.
- W2031569236 cites W2074251522 @default.
- W2031569236 cites W2075575242 @default.
- W2031569236 cites W2077935074 @default.
- W2031569236 cites W2080995242 @default.
- W2031569236 cites W2098049607 @default.
- W2031569236 cites W2114030736 @default.
- W2031569236 cites W2122689055 @default.
- W2031569236 cites W2170835420 @default.
- W2031569236 cites W2337505739 @default.
- W2031569236 cites W2343563442 @default.
- W2031569236 cites W2396914923 @default.
- W2031569236 cites W4301647769 @default.
- W2031569236 cites W7682941 @default.
- W2031569236 doi "https://doi.org/10.1016/0033-0620(88)90012-6" @default.
- W2031569236 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/2971241" @default.
- W2031569236 hasPublicationYear "1988" @default.
- W2031569236 type Work @default.
- W2031569236 sameAs 2031569236 @default.
- W2031569236 citedByCount "63" @default.
- W2031569236 countsByYear W20315692362013 @default.
- W2031569236 countsByYear W20315692362019 @default.
- W2031569236 countsByYear W20315692362020 @default.
- W2031569236 crossrefType "journal-article" @default.
- W2031569236 hasAuthorship W2031569236A5020707125 @default.
- W2031569236 hasAuthorship W2031569236A5054771891 @default.
- W2031569236 hasAuthorship W2031569236A5073910336 @default.
- W2031569236 hasConcept C126322002 @default.
- W2031569236 hasConcept C158846371 @default.
- W2031569236 hasConcept C164705383 @default.
- W2031569236 hasConcept C71924100 @default.
- W2031569236 hasConceptScore W2031569236C126322002 @default.
- W2031569236 hasConceptScore W2031569236C158846371 @default.
- W2031569236 hasConceptScore W2031569236C164705383 @default.
- W2031569236 hasConceptScore W2031569236C71924100 @default.
- W2031569236 hasIssue "2" @default.
- W2031569236 hasLocation W20315692361 @default.
- W2031569236 hasLocation W20315692362 @default.
- W2031569236 hasOpenAccess W2031569236 @default.
- W2031569236 hasPrimaryLocation W20315692361 @default.
- W2031569236 hasRelatedWork W2011347913 @default.
- W2031569236 hasRelatedWork W2049397185 @default.
- W2031569236 hasRelatedWork W2073151595 @default.
- W2031569236 hasRelatedWork W2074833529 @default.
- W2031569236 hasRelatedWork W2125804349 @default.
- W2031569236 hasRelatedWork W2159512267 @default.
- W2031569236 hasRelatedWork W2304633692 @default.
- W2031569236 hasRelatedWork W2355498105 @default.
- W2031569236 hasRelatedWork W2399063111 @default.
- W2031569236 hasRelatedWork W2414320482 @default.
- W2031569236 hasVolume "31" @default.
- W2031569236 isParatext "false" @default.