Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031734805> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2031734805 abstract "Anomaly detection in hyperspectral imagery is a potentially powerful approach for detecting objects of military interest because it does not require atmospheric compensation or target signature libraries. A number of methods have been proposed in the literature, most of these require a parametric model of the background probability distribution to be estimated from the data. There are two potential difficulties with this. First a parametric model must be postulated which is capable of describing the background statistics to an adequate approximation. Most work has made use of the multivariate normal distribution. Secondly the parameters must be estimated sufficiently accurately - this can be problematic for the covariance matrix of high dimensional hyperspectral data. In this paper we present an alternative view and investigate the capabilities of anomaly detection algorithms starting from a minimal set of assumptions. In particular we only require the background pixels to be samples from an independent and identically distributed (iid) process, but do not require the construction of a model for this distribution. We investigate a number of simple measures of the 'strangeness' of a given pixel spectra with respect to the observed background. An algorithm is proposed for detecting anomalies in a self-consistent way. The effectiveness of the algorithms is compared with a well-known anomaly detection algorithm from the literature on real hyperspectral data sets." @default.
- W2031734805 created "2016-06-24" @default.
- W2031734805 creator A5028079603 @default.
- W2031734805 creator A5058184227 @default.
- W2031734805 creator A5061053285 @default.
- W2031734805 creator A5072958876 @default.
- W2031734805 creator A5075389736 @default.
- W2031734805 creator A5084806023 @default.
- W2031734805 date "2003-09-24" @default.
- W2031734805 modified "2023-10-18" @default.
- W2031734805 title "A new approach to anomaly detection in hyperspectral images" @default.
- W2031734805 cites W1551209770 @default.
- W2031734805 cites W1554944419 @default.
- W2031734805 cites W2028603178 @default.
- W2031734805 cites W2047870694 @default.
- W2031734805 cites W2067782748 @default.
- W2031734805 cites W2096634748 @default.
- W2031734805 cites W2123687908 @default.
- W2031734805 cites W2129905273 @default.
- W2031734805 cites W2171379863 @default.
- W2031734805 doi "https://doi.org/10.1117/12.487030" @default.
- W2031734805 hasPublicationYear "2003" @default.
- W2031734805 type Work @default.
- W2031734805 sameAs 2031734805 @default.
- W2031734805 citedByCount "16" @default.
- W2031734805 countsByYear W20317348052013 @default.
- W2031734805 countsByYear W20317348052018 @default.
- W2031734805 crossrefType "proceedings-article" @default.
- W2031734805 hasAuthorship W2031734805A5028079603 @default.
- W2031734805 hasAuthorship W2031734805A5058184227 @default.
- W2031734805 hasAuthorship W2031734805A5061053285 @default.
- W2031734805 hasAuthorship W2031734805A5072958876 @default.
- W2031734805 hasAuthorship W2031734805A5075389736 @default.
- W2031734805 hasAuthorship W2031734805A5084806023 @default.
- W2031734805 hasConcept C105795698 @default.
- W2031734805 hasConcept C11413529 @default.
- W2031734805 hasConcept C117251300 @default.
- W2031734805 hasConcept C121332964 @default.
- W2031734805 hasConcept C122123141 @default.
- W2031734805 hasConcept C124101348 @default.
- W2031734805 hasConcept C12997251 @default.
- W2031734805 hasConcept C141513077 @default.
- W2031734805 hasConcept C153180895 @default.
- W2031734805 hasConcept C154945302 @default.
- W2031734805 hasConcept C159078339 @default.
- W2031734805 hasConcept C160633673 @default.
- W2031734805 hasConcept C178650346 @default.
- W2031734805 hasConcept C185142706 @default.
- W2031734805 hasConcept C26873012 @default.
- W2031734805 hasConcept C33923547 @default.
- W2031734805 hasConcept C41008148 @default.
- W2031734805 hasConcept C58489278 @default.
- W2031734805 hasConcept C739882 @default.
- W2031734805 hasConceptScore W2031734805C105795698 @default.
- W2031734805 hasConceptScore W2031734805C11413529 @default.
- W2031734805 hasConceptScore W2031734805C117251300 @default.
- W2031734805 hasConceptScore W2031734805C121332964 @default.
- W2031734805 hasConceptScore W2031734805C122123141 @default.
- W2031734805 hasConceptScore W2031734805C124101348 @default.
- W2031734805 hasConceptScore W2031734805C12997251 @default.
- W2031734805 hasConceptScore W2031734805C141513077 @default.
- W2031734805 hasConceptScore W2031734805C153180895 @default.
- W2031734805 hasConceptScore W2031734805C154945302 @default.
- W2031734805 hasConceptScore W2031734805C159078339 @default.
- W2031734805 hasConceptScore W2031734805C160633673 @default.
- W2031734805 hasConceptScore W2031734805C178650346 @default.
- W2031734805 hasConceptScore W2031734805C185142706 @default.
- W2031734805 hasConceptScore W2031734805C26873012 @default.
- W2031734805 hasConceptScore W2031734805C33923547 @default.
- W2031734805 hasConceptScore W2031734805C41008148 @default.
- W2031734805 hasConceptScore W2031734805C58489278 @default.
- W2031734805 hasConceptScore W2031734805C739882 @default.
- W2031734805 hasLocation W20317348051 @default.
- W2031734805 hasOpenAccess W2031734805 @default.
- W2031734805 hasPrimaryLocation W20317348051 @default.
- W2031734805 hasRelatedWork W1997670935 @default.
- W2031734805 hasRelatedWork W2076923495 @default.
- W2031734805 hasRelatedWork W2117338621 @default.
- W2031734805 hasRelatedWork W2759110340 @default.
- W2031734805 hasRelatedWork W2767115090 @default.
- W2031734805 hasRelatedWork W2783789044 @default.
- W2031734805 hasRelatedWork W3175405112 @default.
- W2031734805 hasRelatedWork W3211035526 @default.
- W2031734805 hasRelatedWork W4296210064 @default.
- W2031734805 hasRelatedWork W953909732 @default.
- W2031734805 isParatext "false" @default.
- W2031734805 isRetracted "false" @default.
- W2031734805 magId "2031734805" @default.
- W2031734805 workType "article" @default.