Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031794930> ?p ?o ?g. }
- W2031794930 endingPage "3936" @default.
- W2031794930 startingPage "3924" @default.
- W2031794930 abstract "Using daily fine particulate matter (PM2.5) composition data from the 2000-2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2.5 components agreed well with the U.S. PM2.5 observed during the study period (mean=14.3 ug/m3; R2= 0.91). Apportionment regression analyses using single-element tracers for each source category gave results consistent with the APCA estimates. Comparisons of nearby sites indicated that the PM2.5 mass and the secondary aerosols were most homogenous spatially, while traffic PM2.5 and its tracer, EC, were among the most spatially representative of the source-related components. Comparison of apportionment results to a previous analysis of the 1979-1982 IP Network revealed similar and correlated major U.S. source category factors, albeit at lower levels than in the earlier period, suggesting a consistency in the U.S. spatial patterns of these source-related exposures over time, as well. These results indicate that applying source apportionment methods to the nationwide CSN can be an informative avenue for identifying and quantifying source components for the subsequent estimation of source-specific health effects, potentially contributing to more efficient regulation of PM2.5." @default.
- W2031794930 created "2016-06-24" @default.
- W2031794930 creator A5019204402 @default.
- W2031794930 creator A5038180125 @default.
- W2031794930 creator A5038920143 @default.
- W2031794930 date "2011-08-01" @default.
- W2031794930 modified "2023-09-30" @default.
- W2031794930 title "A source apportionment of U.S. fine particulate matter air pollution" @default.
- W2031794930 cites W1968495925 @default.
- W2031794930 cites W1973058060 @default.
- W2031794930 cites W1977541047 @default.
- W2031794930 cites W1986787095 @default.
- W2031794930 cites W1990183940 @default.
- W2031794930 cites W1990393331 @default.
- W2031794930 cites W2009202255 @default.
- W2031794930 cites W2010047551 @default.
- W2031794930 cites W2016091032 @default.
- W2031794930 cites W2020686549 @default.
- W2031794930 cites W2022764827 @default.
- W2031794930 cites W2029670846 @default.
- W2031794930 cites W2037570227 @default.
- W2031794930 cites W2038832477 @default.
- W2031794930 cites W2047352072 @default.
- W2031794930 cites W2048160823 @default.
- W2031794930 cites W2049743420 @default.
- W2031794930 cites W2050450427 @default.
- W2031794930 cites W2052013668 @default.
- W2031794930 cites W2056857971 @default.
- W2031794930 cites W2058829252 @default.
- W2031794930 cites W2067851931 @default.
- W2031794930 cites W2088057474 @default.
- W2031794930 cites W2096673955 @default.
- W2031794930 cites W2103893521 @default.
- W2031794930 cites W2151133928 @default.
- W2031794930 cites W2157799151 @default.
- W2031794930 cites W2158989459 @default.
- W2031794930 cites W2166604768 @default.
- W2031794930 cites W2318698569 @default.
- W2031794930 cites W4243461261 @default.
- W2031794930 cites W4254491467 @default.
- W2031794930 cites W2011887222 @default.
- W2031794930 doi "https://doi.org/10.1016/j.atmosenv.2011.04.070" @default.
- W2031794930 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3951912" @default.
- W2031794930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24634604" @default.
- W2031794930 hasPublicationYear "2011" @default.
- W2031794930 type Work @default.
- W2031794930 sameAs 2031794930 @default.
- W2031794930 citedByCount "191" @default.
- W2031794930 countsByYear W20317949302012 @default.
- W2031794930 countsByYear W20317949302013 @default.
- W2031794930 countsByYear W20317949302014 @default.
- W2031794930 countsByYear W20317949302015 @default.
- W2031794930 countsByYear W20317949302016 @default.
- W2031794930 countsByYear W20317949302017 @default.
- W2031794930 countsByYear W20317949302018 @default.
- W2031794930 countsByYear W20317949302019 @default.
- W2031794930 countsByYear W20317949302020 @default.
- W2031794930 countsByYear W20317949302021 @default.
- W2031794930 countsByYear W20317949302022 @default.
- W2031794930 countsByYear W20317949302023 @default.
- W2031794930 crossrefType "journal-article" @default.
- W2031794930 hasAuthorship W2031794930A5019204402 @default.
- W2031794930 hasAuthorship W2031794930A5038180125 @default.
- W2031794930 hasAuthorship W2031794930A5038920143 @default.
- W2031794930 hasBestOaLocation W20317949302 @default.
- W2031794930 hasConcept C105923489 @default.
- W2031794930 hasConcept C107872376 @default.
- W2031794930 hasConcept C127313418 @default.
- W2031794930 hasConcept C154945302 @default.
- W2031794930 hasConcept C178790620 @default.
- W2031794930 hasConcept C185592680 @default.
- W2031794930 hasConcept C188471824 @default.
- W2031794930 hasConcept C18903297 @default.
- W2031794930 hasConcept C24245907 @default.
- W2031794930 hasConcept C27438332 @default.
- W2031794930 hasConcept C2778804858 @default.
- W2031794930 hasConcept C2779345167 @default.
- W2031794930 hasConcept C3019268976 @default.
- W2031794930 hasConcept C39432304 @default.
- W2031794930 hasConcept C41008148 @default.
- W2031794930 hasConcept C518851703 @default.
- W2031794930 hasConcept C521259446 @default.
- W2031794930 hasConcept C559116025 @default.
- W2031794930 hasConcept C86803240 @default.
- W2031794930 hasConcept C87717796 @default.
- W2031794930 hasConcept C91586092 @default.
- W2031794930 hasConceptScore W2031794930C105923489 @default.
- W2031794930 hasConceptScore W2031794930C107872376 @default.
- W2031794930 hasConceptScore W2031794930C127313418 @default.
- W2031794930 hasConceptScore W2031794930C154945302 @default.
- W2031794930 hasConceptScore W2031794930C178790620 @default.
- W2031794930 hasConceptScore W2031794930C185592680 @default.
- W2031794930 hasConceptScore W2031794930C188471824 @default.
- W2031794930 hasConceptScore W2031794930C18903297 @default.
- W2031794930 hasConceptScore W2031794930C24245907 @default.
- W2031794930 hasConceptScore W2031794930C27438332 @default.
- W2031794930 hasConceptScore W2031794930C2778804858 @default.
- W2031794930 hasConceptScore W2031794930C2779345167 @default.