Matches in SemOpenAlex for { <https://semopenalex.org/work/W2031964861> ?p ?o ?g. }
- W2031964861 endingPage "1291" @default.
- W2031964861 startingPage "1278" @default.
- W2031964861 abstract "In recent years the Dirichlet process prior has experienced a great success in the context of Bayesian mixture modeling. The idea of overcoming discreteness of its realizations by exploiting it in hierarchical models, combined with the development of suitable sampling techniques, represent one of the reasons of its popularity. In this article we propose the normalized inverse-Gaussian (N–IG) process as an alternative to the Dirichlet process to be used in Bayesian hierarchical models. The N–IG prior is constructed via its finite-dimensional distributions. This prior, although sharing the discreteness property of the Dirichlet prior, is characterized by a more elaborate and sensible clustering which makes use of all the information contained in the data. Whereas in the Dirichlet case the mass assigned to each observation depends solely on the number of times that it occurred, for the N–IG prior the weight of a single observation depends heavily on the whole number of ties in the sample. Moreover, expressions corresponding to relevant statistical quantities, such as a priori moments and the predictive distributions, are as tractable as those arising from the Dirichlet process. This implies that well-established sampling schemes can be easily extended to cover hierarchical models based on the N–IG process. The mixture of N–IG process and the mixture of Dirichlet process are compared using two examples involving mixtures of normals." @default.
- W2031964861 created "2016-06-24" @default.
- W2031964861 creator A5003890590 @default.
- W2031964861 creator A5024867296 @default.
- W2031964861 creator A5047878085 @default.
- W2031964861 date "2005-12-01" @default.
- W2031964861 modified "2023-10-07" @default.
- W2031964861 title "Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors" @default.
- W2031964861 cites W1502461990 @default.
- W2031964861 cites W1528242606 @default.
- W2031964861 cites W1531406273 @default.
- W2031964861 cites W1560385679 @default.
- W2031964861 cites W1590524120 @default.
- W2031964861 cites W1612402587 @default.
- W2031964861 cites W1907257599 @default.
- W2031964861 cites W1963703587 @default.
- W2031964861 cites W1967687583 @default.
- W2031964861 cites W1981841280 @default.
- W2031964861 cites W1990665143 @default.
- W2031964861 cites W2001272401 @default.
- W2031964861 cites W2006043936 @default.
- W2031964861 cites W2010132066 @default.
- W2031964861 cites W2011342110 @default.
- W2031964861 cites W2011416738 @default.
- W2031964861 cites W2015874531 @default.
- W2031964861 cites W2037809771 @default.
- W2031964861 cites W2048370764 @default.
- W2031964861 cites W2053218206 @default.
- W2031964861 cites W2053405531 @default.
- W2031964861 cites W2056099894 @default.
- W2031964861 cites W2062882942 @default.
- W2031964861 cites W2065392216 @default.
- W2031964861 cites W2069429561 @default.
- W2031964861 cites W2069856523 @default.
- W2031964861 cites W2072169887 @default.
- W2031964861 cites W2074178102 @default.
- W2031964861 cites W2079501320 @default.
- W2031964861 cites W2082630584 @default.
- W2031964861 cites W2085601275 @default.
- W2031964861 cites W2091797506 @default.
- W2031964861 cites W2117818000 @default.
- W2031964861 cites W2141770651 @default.
- W2031964861 cites W2145399086 @default.
- W2031964861 cites W2150507172 @default.
- W2031964861 cites W2157005274 @default.
- W2031964861 cites W2325963224 @default.
- W2031964861 cites W2735782968 @default.
- W2031964861 cites W2903830437 @default.
- W2031964861 cites W3023707218 @default.
- W2031964861 cites W3101682570 @default.
- W2031964861 cites W3125912266 @default.
- W2031964861 cites W604181985 @default.
- W2031964861 doi "https://doi.org/10.1198/016214505000000132" @default.
- W2031964861 hasPublicationYear "2005" @default.
- W2031964861 type Work @default.
- W2031964861 sameAs 2031964861 @default.
- W2031964861 citedByCount "164" @default.
- W2031964861 countsByYear W20319648612012 @default.
- W2031964861 countsByYear W20319648612013 @default.
- W2031964861 countsByYear W20319648612014 @default.
- W2031964861 countsByYear W20319648612015 @default.
- W2031964861 countsByYear W20319648612016 @default.
- W2031964861 countsByYear W20319648612017 @default.
- W2031964861 countsByYear W20319648612018 @default.
- W2031964861 countsByYear W20319648612019 @default.
- W2031964861 countsByYear W20319648612020 @default.
- W2031964861 countsByYear W20319648612021 @default.
- W2031964861 countsByYear W20319648612022 @default.
- W2031964861 countsByYear W20319648612023 @default.
- W2031964861 crossrefType "journal-article" @default.
- W2031964861 hasAuthorship W2031964861A5003890590 @default.
- W2031964861 hasAuthorship W2031964861A5024867296 @default.
- W2031964861 hasAuthorship W2031964861A5047878085 @default.
- W2031964861 hasConcept C105795698 @default.
- W2031964861 hasConcept C107673813 @default.
- W2031964861 hasConcept C111472728 @default.
- W2031964861 hasConcept C134306372 @default.
- W2031964861 hasConcept C138885662 @default.
- W2031964861 hasConcept C141318989 @default.
- W2031964861 hasConcept C151730666 @default.
- W2031964861 hasConcept C154945302 @default.
- W2031964861 hasConcept C169214877 @default.
- W2031964861 hasConcept C171686336 @default.
- W2031964861 hasConcept C177769412 @default.
- W2031964861 hasConcept C181262310 @default.
- W2031964861 hasConcept C182310444 @default.
- W2031964861 hasConcept C2779343474 @default.
- W2031964861 hasConcept C2781280628 @default.
- W2031964861 hasConcept C28826006 @default.
- W2031964861 hasConcept C33923547 @default.
- W2031964861 hasConcept C41008148 @default.
- W2031964861 hasConcept C500882744 @default.
- W2031964861 hasConcept C52290693 @default.
- W2031964861 hasConcept C61224824 @default.
- W2031964861 hasConcept C73555534 @default.
- W2031964861 hasConcept C75553542 @default.
- W2031964861 hasConcept C86803240 @default.
- W2031964861 hasConcept C92835128 @default.